ホーム 計算ツール
代理店ログイン

Acetylcysteine

カタログ番号 T0875   CAS 616-91-1
別名: N-Acetyl-L-cysteine, LNAC, NAC, N-Acetyl Cysteine

Acetylcysteine (NAC) is an N-acetyl derivative of cysteine, a ROS inhibitor and mucolytic agent. Acetylcysteine induces apoptosis, can be used to reduce mucus thickness, and has anti-influenza viral activity.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Acetylcysteine, CAS 616-91-1
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
5 g 在庫あり ¥ 7,500
10 g 在庫あり ¥ 10,000
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Acetylcysteine (NAC) is an N-acetyl derivative of cysteine, a ROS inhibitor and mucolytic agent. Acetylcysteine induces apoptosis, can be used to reduce mucus thickness, and has anti-influenza viral activity.
In vitro METHODS: Human bladder cancer cells T24 were treated with Acetylcysteine (5-50 mM) for 24 h. Cell viability was measured by MTT.
RESULTS: Acetylcysteine dose-dependently inhibited the cell viability of T24 cells with an IC50 of 33.33 mM.[1]
METHODS: Rat cardiomyocytes H9c2 were treated with Acetylcysteine (2-4 mM) for 12-24 h, and apoptosis was detected by Flow Cytometry.
RESULTS: Acetylcysteine dose- and time-dependently induced apoptosis in H9c2 cells. [2]
In vivo METHODS: To investigate the effects on apoptotic liver injury in mice, Acetylcysteine (150 mg/kg) was administered intraperitoneally to CD-1 mice as a single injection, and GalN/LPS was used to induce hepatic injury 30 min later.
RESULTS: Acetylcysteine pretreatment significantly attenuated GalN/LPS-induced hepatocyte apoptosis.Acetylcysteine attenuates GalN/LPS-induced apoptotic liver injury through its potent ROS scavenging and anti-apoptotic effects. [3]
METHODS: To assay in vivo activity, Acetylcysteine (500 mg/kg) was administered orally to R6/1 transgenic mice with Huntington's disease (HD) once daily for nine weeks.
RESULTS: Chronic Acetylcysteine administration delayed the onset and development of motor deficits in R6/1 mice and also had antidepressant-like effects in both R6/1 and wild-type mice. [4]
細胞研究 For survival experiments, washed cells are resuspended in RPM1 1640 medium and plated in 0.5 mL at a density of 8-10×105 per well in 24 well plastic culture dishes coated with rat tail collagen. To feed, but to avoid loss of floating cells, fresh medium (0.2 mL) is added to the cultures on days 1, 5, and 10. For experiments involving 'primed' PC12 cells, cultures are pretreated for l-2 weeks with NGF in RPM1 1640 medium supplemented with 1% heat-iN-acetylcysteinetivated horse serum. The cells are then washed and passaged into serum-free RPM1 1640 medium.
動物実験 Rats are randomly allocated into five groups: sham group (n=5), control group with IIR (n=8) and three groups with IIR who are given N-acetylcysteine in different dosages: 150 mg/kg intraperitoneally 5 min before ischemia (n=8, group N-acetylcysteine 150), 300 mg/kg i.p 5 min before ischemia (n=7, group N-acetylcysteine 300), and 150 mg/kg i.p 5 min before ischemia plus 150 mg/kg 5 min before reperfusion (n=7, group N-acetylcysteine 150 + 150). After 4 h of reperfusion, the animals are euthanized by exsanguination from the abdominal aorta.[1]
別名 N-Acetyl-L-cysteine, LNAC, NAC, N-Acetyl Cysteine
分子量 163.19
分子式 C5H9NO3S
CAS No. 616-91-1

保存条件

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

DMSO: 60 mg/mL (367.67 mM), The compound is unstable in solution, please use soon.

Ethanol: 31 mg/mL (190 mM)

H2O: 100 mg/ml (612.78 mM), Sonication and heating are recommended.

参考文献

1. Supabphol A, et al. N-acetylcysteine inhibits proliferation, adhesion, migration and invasion of human bladder cancer cells. J Med Assoc Thai. 2009 Sep;92(9):1171-7. 2. Liu Y, et al. N‑acetylcysteine induces apoptosis via the mitochondria‑dependent pathway but not via endoplasmic reticulum stress in H9c2 cells. Mol Med Rep. 2017 Nov;16(5):6626-6633. 3. Wang H, et al. N-acetylcysteine attenuates lipopolysaccharide-induced apoptotic liver damage in D-galactosamine-sensitized mice. Acta Pharmacol Sin. 2007 Nov;28(11):1803-9. 4. Wright DJ, et al. N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington's disease. Transl Psychiatry. 2015 Jan 6;5(1):e492. 5. Farr SA, et al. J Neurochem, 2003, 84(5), 1173-1183. 6. Kalimeris K, et al. N-acetylcysteine ameliorates liver injury in a rat model of intestinal ischemia reperfusion. J Surg Res. 2016 Dec;206(2):263-272. 7. Xu B, Xu J, Cai N, et al. Roflumilast prevents ischemic stroke-induced neuronal damage by restricting GSK3β-mediated oxidative stress and IRE1α/TRAF2/JNK pathway[J]. Free Radical Biology and Medicine. 2020 8. Xu B, Qin Y, Li D, et al. Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway[J]. Redox Biology. 2020, 28: 101342.

引用文献

1. Tang Y, Song H, Wang Z, et al.Repurposing antiparasitic antimonials to noncovalently rescue temperature-sensitive p53 mutations.Cell Reports.2022, 39(2): 110622. 2. Chen T, Leng J, Tan J, et al.Discovery of Novel Potent Covalent Glutathione Peroxidase 4 Inhibitors as Highly Selective Ferroptosis Inducers for the Treatment of Triple-Negative Breast Cancer.Journal of Medicinal Chemistry.2023 3. Liu X, Jin J, Wu Y, et al.Fluoroindole chalcone analogues targeting the colchicine binding site of tubulin for colorectal oncotherapy.European Journal of Medicinal Chemistry.2023: 115540. 4. Li Y, Bao Y, Li Y, et al.RSL3 Inhibits Porcine Epidemic Diarrhea Virus Replication by Activating Ferroptosis.Viruses.2023, 15(10): 2080. 5. Liu X, Sun W, Cao J, et al.Acrolein increases the concentration of intracellular Zn2⁺ by producing mitochondrial reactive oxygen species in A549 cells.Toxicology and Industrial Health.2023: 07482337231198350. 6. Zhu M, Tang X, Gong Z, et al. TAD1822-7 induces ROS-mediated apoptosis of HER2 positive breast cancer by decreasing E-cadherin in an EphB4 dependent manner. Life Sciences. 2021: 119954 7. Xu B, Qin Y, Li D, et al. Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway. Redox Biology. 2020, 28: 101342 8. Xu B, Xu J, Cai N, et al. Roflumilast prevents ischemic stroke-induced neuronal damage by restricting GSK3β-mediated oxidative stress and IRE1α/TRAF2/JNK pathway. Free Radical Biology and Medicine. 2020 9. Xue J, Liao Q, Luo M, et al. Cigarette smoke-induced oxidative stress activates NRF2 to mediate fibronectin disorganization in vascular formation. Open Biology. 2022, 12(4): 210310 10. Yi Y, Gao K, Lin P, et al. Staphylococcus aureus-Induced Necroptosis Promotes Mitochondrial Damage in Goat Endometrial Epithelial Cells. Animals. 2022, 12(17): 2218.
11. Tang Y, Song H, Wang Z, et al. Repurposing antiparasitic antimonials to noncovalently rescue temperature-sensitive p53 mutations. Cell Reports. 2022, 39(2): 110622 12. Wu X, Ren Y, Wen Y, et al. Deacetylation of ZKSCAN3 by SIRT1 induces autophagy and protects SN4741 cells against MPP+-induced oxidative stress. Free Radical Biology and Medicine. 2022 13. Ma X, Tan X, Yu B, et al. DOCK2 regulates antifungal immunity by regulating RAC GTPase activity. Cellular & Molecular Immunology. 2022: 1-17. 14. Yi Y, Gao K, Zhang L, et al. Zearalenone Induces MLKL-Dependent Necroptosis in Goat Endometrial Stromal Cells via the Calcium Overload/ROS Pathway. International Journal of Molecular Sciences. 2022, 23(17): 10170. 15. Lin L, Chen Y, Li Q, et al. Isoxanthohumol, a component of Sophora flavescens, promotes the activation of the NLRP3 inflammasome and induces idiosyncratic hepatotoxicity. Journal of Ethnopharmacology. 2021: 114796. 16. Zhang Y, Zhang C, Li J, et al. Inhibition of AKT induces p53/SIRT6/PARP1-dependent parthanatos to suppress tumor growth. Cell Communication and Signaling. 2022, 20(1): 1-21 17. Zhang P, Zhang J, Quan H, et al. Effects of butein on human osteosarcoma cell proliferation, apoptosis, and autophagy through oxidative stress. Human & Experimental Toxicology. 2022, 41: 09603271221074346. 18. Yang C, Wang X, To K K W, et al.Circulating tumor cells shielded with extracellular vesicle-derived CD45 evade T cell attack to enable metastasis.Signal Transduction and Targeted Therapy.2024, 9(1): 84.
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Human Endogenous Metabolite Library Anti-Cancer Clinical Compound Library Anti-Cancer Approved Drug Library Drug Repurposing Compound Library Anti-Cancer Drug Library Inhibitor Library Anti-Colorectal Cancer Traditional Chinese Medicine Compound Library Natural Product Library for HTS Anti-Tumor Natural Product Library Anti-infective Natural Product Library

関連製品

同一標的の関連化合物
BK60106 Melatonin EC359 Anticancer agent 43 Salinomycin sodium salt PD168393 Polyphyllin II Zinc Protoporphyrin

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Acetylcysteine 616-91-1 Apoptosis Immunology/Inflammation Metabolism Microbiology/Virology NF-Κb ROS Reactive Oxygen Species Influenza Virus Ferroptosis TNF Endogenous Metabolite Inhibitor inhibit N-Acetylcysteine N-Acetyl-L-cysteine LNAC NAC N-Acetyl Cysteine inhibitor