ホーム 計算ツール
代理店ログイン

Chloroquine

カタログ番号 T8689   CAS 54-05-7
別名: CQ

Chloroquine is a Toll-like receptor inhibitor that inhibits autophagy. Chloroquine has anti-malarial and anti-inflammatory activity and is widely used in the treatment of malaria and rheumatoid arthritis. Chloroquine also has anti-SARS-CoV-2 (COVID-19) activity and anti-HIV-1 activity.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Chloroquine, CAS 54-05-7
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
100 mg 在庫あり ¥ 12,500
200 mg 在庫あり ¥ 21,500
500 mg 在庫あり ¥ 43,500
1 mL * 10 mM (in DMSO) 在庫あり ¥ 11,500
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Chloroquine is a Toll-like receptor inhibitor that inhibits autophagy. Chloroquine has anti-malarial and anti-inflammatory activity and is widely used in the treatment of malaria and rheumatoid arthritis. Chloroquine also has anti-SARS-CoV-2 (COVID-19) activity and anti-HIV-1 activity.
In vitro METHODS: Human cholangiocarcinoma cells QBC939 were treated with Chloroquine (1.2-200 µM) for 24 h. Cell growth inhibition was detected by MTT.
RESULTS: Chloroquine dose-dependently inhibited the cell growth of HRECs with an IC50 of 53.01 µM. [1]
METHODS: Human non-small cell lung cancer cells A549 were treated with Chloroquine (10-80 μM) for 24 h. The expression levels of target proteins were detected by Western Blot.
RESULTS: Chloroquine induced an increase in LC3-II expression and a decrease in LC3-I expression, resulting in an increase in the LC3-II/LC3-I ratio. The highest LC3-II/LC3-I ratio was observed with 40 μM Chloroquine treatment. [2]
METHODS: Human osteosarcoma cells U2OS and human cervical cancer cells HeLa were treated with Chloroquine (100 μM) for 5 h. LAMP1, a marker protein for late endosomal compartment and lysosome, was detected by Immunofluorescence.
RESULTS: Chloroquine increased the area of LAMP1 positive structures. [3]
In vivo METHODS: To investigate the effects of Chloroquine on acute liver injury and its potential molecular mechanisms, a single dose of Chloroquine (5-50 mg/kg) was administered intraperitoneally to C57BL/6 mice 2-24 h before CCl4 (10 mL/kg) injection.
RESULTS: Chloroquine pretreatment significantly inhibited CCl4-induced acute liver injury, as evidenced by a decrease in serum aminotransferases, aspartate aminotransferase, and a decrease in the histological score of liver injury, and down-regulated CCl4-induced high-mobility histone 1 (HMGB1) expression in liver tissues as well as the levels of serum HMGB1, IL-6, and TNF-α. levels. [4]
METHODS: To investigate the relationship between Chloroquine and retinopathy, Chloroquine (50 mg/kg ) was administered intraperitoneally to C57/BL6 mice three times a week for six weeks.
RESULTS: Chronic administration of Chloroquine induced retinopathy in mice. mRNAs for IL-1β mRNA, a component of inflammatory vesicles, and caspase1 were increased in the retinas of Chloroquine-treated mice, consistent with the initiation of inflammatory vesicles, and NTPDase1 was increased, suggesting an increase in extracellular ATP in the retina. [5]
別名 CQ
分子量 319.87
分子式 C18H26ClN3
CAS No. 54-05-7

保存条件

keep away from direct sunlight

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

DMSO: 100 mg/mL (312.63 mM)

Ethanol: 100 mg/mL (312.63 mM), Sonication is recommended.

参考文献

1. Jia B, et al. Autophagy inhibitor chloroquine induces apoptosis of cholangiocarcinoma cells via endoplasmic reticulum stress. Oncol Lett. 2018 Sep;16(3):3509-3516. 2. Liu L, et al. Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondrial‑mediated apoptosis. Oncol Rep. 2018 Jun;39(6):2807-2816. 3. Mauthe M, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435-1455. 4. Dai C, et al. Chloroquine ameliorates carbon tetrachloride-induced acute liver injury in mice via the concomitant inhibition of inflammation and induction of apoptosis. Cell Death Dis. 2018 Nov 26;9(12):1164. 5. Wennan L, et al. Increased inflammasome priming and microglial activation in a mouse model of chloroquine retinopathy. Investigative Ophthalmology & Visual Science. 2016 September; 57:2237. 6. Chen J, Li J, Chen J, et al. Treatment of collagen-induced arthritis rat model by using Notch signalling inhibitor[J]. Journal of Orthopaedic Translation. 2021, 28: 100-107. 7. Pan X, Li R, Guo H, et al. Dihydropyridine Calcium Channel Blockers Suppress the Transcription of PD-L1 by Inhibiting the Activation of STAT1[J]. Frontiers in Pharmacology. 2021, 11: 2233. 8. Wang M, Xu Y, Zhang Y, et al. Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis[J]. Theranostic. 2021, 11(10): 5010.

引用文献

1. Yan C, Zheng L, Jiang S, et al.Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity.Cancer Cell.2023 2. Ding L, Chen X, Zhang W, et al.Canagliflozin primes antitumor immunity by triggering PD-L1 degradation in endocytic recycling.The Journal of Clinical Investigation.2023, 133(1). 3. Yu Q, Li C, Niu Q, et al.Hepatic COX1 loss leads to impaired autophagic flux and exacerbates nonalcoholic steatohepatitis.Acta Pharmaceutica Sinica B.2023 4. Zhang W, Pan X, Xu Y, et al.Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA.Acta Pharmaceutica Sinica B.2023 5. Liu X, Fang Y, Lv X, et al.Deubiquitinase OTUD6A in macrophages promotes intestinal inflammation and colitis via deubiquitination of NLRP3.Cell Death & Differentiation.2023: 1-15. 6. Lei S, Chen C, Han F, et al.AMER1 deficiency promotes the distant metastasis of colorectal cancer by inhibiting SLC7A11-and FTL-mediated ferroptosis.Cell Reports.2023, 42(9). 7. Xiang H, Liu R, Zhang X, et al.Discovery of Small-Molecule Autophagy Inhibitors by Disrupting the Protein–Protein Interactions Involving Autophagy-Related 5.Journal of Medicinal Chemistry.2023 8. Zhu X, Huang N, Ji Y, et al.Brusatol induces ferroptosis in oesophageal squamous cell carcinoma by repressing GSH synthesis and increasing the labile iron pool via inhibition of the NRF2 pathway.Biomedicine & Pharmacotherapy.2023, 167: 115567. 9. Zhao L, Zhang W, Luan F, et al.Butein suppresses PD-L1 expression via downregulating STAT1 in non-small cell lung cancer.Biomedicine & Pharmacotherapy.2023, 157: 114030. 10. Zhang M, Jia X, Cheng C, et al.Capsaicin functions as a selective degrader of STAT3 to enhance host resistance to viral infection.Acta Pharmacologica Sinica.2023: 1-12.
11. Han S, Zhang H, Liu X, et al.Enhanced autophagy reversed aflatoxin B1-induced decrease in lactate secretion of dairy goat Sertoli cells.Ecotoxicology and Environmental Safety.2023, 259: 115063. 12. Jiao J, Ruan L, Cheng C, et al.Paired protein kinases PRKCI-RIPK2 promote pancreatic cancer growth and metastasis via enhancing NF-κB/JNK/ERK phosphorylation.Molecular Medicine.2023, 29(1): 1-17. 13. Shan X, Jiang R, Gou D, et al.Identification of a diketopiperazine‐based O‐GlcNAc transferase inhibitor sensitizing hepatocellular carcinoma to CDK9 inhibition.The FEBS Journal.2023 14. Cao P, Wang Y, Zhang C, et al.Quercetin ameliorates non-alcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy.The Journal of Nutritional Biochemistry.2023: 109414. 15. Xiang H, Wang R.Discovery of small-molecule inhibitors for the protein-protein interactions involving ATG5.Autophagy Reports.2023, 2(1): 2215617. 16. Zhou Y, Li Q, Zheng J, et al. N-Glycosylation on Asn50 of SND1 Is Required for Glioma U87 Cell Proliferation and Metastasis. Journal of Immunology Research. 2022 17. Wang J, Su Q, Wu Q, et al. Sanguinarine impairs lysosomal function and induces ROS-dependent mitophagy and apoptosis in human hepatocellular carcinoma cells. Archives of Pharmacal Research. 2021: 1-12. 18. Su G, Yang W, Wang S, et al. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Β and IL-18. Biochemical and Biophysical Research Communications. 2021, 561: 33-39. 19. Xiao Q, Lei L, Ren J, et al. Mutant NPM1-Regulated FTO-Mediated m6A Demethylation Promotes Leukemic Cell Survival via PDGFRB/ERK Signaling Axis. Frontiers in Oncology. 2022.12 20. Wang M, Xu Y, Zhang Y, et al. Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostic. 2021 Mar 5;11(10):5010-5027. doi: 10.7150/thno.55645. eCollection 2021. 21. Nicholson M W, Huang C Y, Wang J Y, et al. Cardio-and Neurotoxicity of Selected Anti-COVID-19 Drugs. Pharmaceuticals. 2022, 15(6): 765 22. Wang F, Xie M, Chen P, et al. Homoharringtonine combined with cladribine and aclarubicin (HCA) in acute myeloid leukemia: A new regimen of conventional drugs and its mechanism. Oxidative Medicine and Cellular Longevity. 2022 23. Chen J, Li J, Chen J, et al. Treatment of collagen-induced arthritis rat model by using Notch signalling inhibitor. Journal of Orthopaedic Translation. 2021, 28: 100-107. 24. Pan X, Li R, Guo H, et al. Dihydropyridine Calcium Channel Blockers Suppress the Transcription of PD-L1 by Inhibiting the Activation of STAT1. Frontiers in Pharmacology. 2021 Jan 13;11:539261. doi: 10.3389/fphar.2020.539261. eCollection 2020. 25. Xu C, Zhao W, Huang X, et al. TORC2/3-mediated DUSP1 upregulation is essential for human decidualization. Reproduction. 2021, 1(aop). 26. Dai H, Wang J, Huang Z, et al. LncRNA OIP5-AS1 Promotes the Autophagy-Related Imatinib Resistance in Chronic Myeloid Leukemia Cells by Regulating miR-30e-5p/ATG12 Axis. Technology in cancer research & treatment. 2021, 20: 15330338211052150. 27. Wang W, Li S, Xu X, et al. Danshensu alleviates pseudo-typed SARS-CoV-2 induced mouse acute lung inflammation. Acta Pharmacologica Sinica. 2021: 1-10. 28. Su C, Cheng C, Rong Z, et al.Repurposing fluphenazine as an autophagy modulator for treating liver cancer.Heliyon.2023 29. Zhang M, Tan H, Gong Y, et al.TRIM26 restricts Epstein–Barr virus infection in nasopharyngeal epithelial cells through K48‐linked ubiquitination of HSP‐90β.The FASEB Journal.2024, 38(1): e23345. 30. Cui H, Zhu B, Li H, et al.Malonate differentially affects cell survival and confers chemoresistance in cancer cells via the induction of p53-dependent autophagy.Biochemical Pharmacology.2023: 115950. 31. Han Y, Wang C, Lu K, et al.Bovine parainfluenza type 3 virus induces incomplete autophagy to promote viral replication by activated beclin1 in vitro.Veterinary Microbiology.2024: 109972. 32. Chen H, Hu J, Xiong X, et al.AURKA inhibition induces Ewing’s sarcoma apoptosis and ferroptosis through NPM1/YAP1 axis.Cell Death & Disease.2024, 15(1): 99. 33. Liu T, Yue X, Chen X, et al.Nilotinib in combination with sunitinib renders MCL-1 for degradation and activates autophagy that overcomes sunitinib resistance in renal cell carcinoma.Cellular Oncology.2024: 1-18. 34. Ren Y L, Jiang Z, Wang J Y, et al.Loss of CHCHD2 Stability Coordinates with C1QBP/CHCHD2/CHCHD10 Complex Impairment to Mediate PD-Linked Mitochondrial Dysfunction.Molecular Neurobiology.2024: 1-21. 35. Li L, Fu S, Wang J, et al.SRT1720 inhibits bladder cancer cell progression by impairing autophagic flux.Biochemical Pharmacology.2024: 116111. 36. Hou G, Hu W, Sang Y, et al.Corynoxine triggers cell death via activating PP2A and regulating AKT-mTOR/GSK3β axes in NSCLC.Biochemical Pharmacology.2024: 116110.
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Anti-Cancer Clinical Compound Library Anti-Cancer Drug Library Inhibitor Library Anti-Cancer Approved Drug Library Antiparasitic Natural Product Library Drug Repurposing Compound Library Anti-Parasitic Compound Library Membrane Protein-targeted Compound Library Anti-Cancer Compound Library Autophagy Compound Library

関連製品

同一標的の関連化合物
Saquinavir Bemnifosbuvir hemisulfate SARS-CoV-2-IN-39 Debrisoquin Kansuinine B SARS-CoV-2 3CLpro-IN-19 D1N8 Bromhexine hydrochloride

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Chloroquine 54-05-7 Autophagy Immunology/Inflammation Microbiology/Virology Proteases/Proteasome SARS-CoV TLR HIV Protease Antibiotic Parasite Inhibitor SARS coronavirus malaria rheumatoid COVID-19 CQ Toll-like Receptor (TLR) immune-modulating arthritis Human immunodeficiency virus HIV inflammatory inhibit infection inhibitor