ホーム 計算ツール
代理店ログイン

ML385

カタログ番号 T4360   CAS 846557-71-9

ML385 is an NRF2 inhibitor (IC50=1.9 μM) with novelty and specificity. ML385 has anti-inflammatory activity by modulating anti-oxidative stress through the inhibition of NRF2. ML385 also exhibits anti-tumor activity.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
ML385, CAS 846557-71-9
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
5 mg 在庫あり ¥ 11,000
10 mg 在庫あり ¥ 16,500
25 mg 在庫あり ¥ 35,500
50 mg 在庫あり ¥ 58,500
100 mg 在庫あり ¥ 91,000
200 mg 在庫あり ¥ 136,000
500 mg 在庫あり ¥ 217,500
1 mL * 10 mM (in DMSO) 在庫あり ¥ 12,500
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 ML385 is an NRF2 inhibitor (IC50=1.9 μM) with novelty and specificity. ML385 has anti-inflammatory activity by modulating anti-oxidative stress through the inhibition of NRF2. ML385 also exhibits anti-tumor activity.
ターゲット&IC50 Nrf2:1.9 μM
In vitro METHODS: Human lung cancer cells A549 were treated with ML385 (0.25-5 μM) for 12-72 h. The expression levels of target genes were detected by RT-qPCR.
RESULTS: ML385 dose-dependently and time-dependently decreased the transcriptional activity of NRF2. [1]
METHODS: Human lung cancer cells EBC1 were treated with ML385 (1-25 μM) for 48 h, and the expression levels of target proteins were detected by Western Blot.
RESULTS: NRF2 expression was inhibited by treatment with 5 μM ML385. When the concentration of ML385 was increased above 5 μM, the NRF2 protein level was restored. [2]
In vivo METHODS: To detect anti-tumor activity in vivo, ML385 (30 mg/kg) and carboplatin (5 mg/kg) were intraperitoneally injected into athymic nude mice harboring human lung cancer tumors A549 or H460 five times a week for three weeks.
RESULTS: Treatment with ML385 in combination with carboplatin showed a significant reduction in tumor growth. Although treatment with a single agent resulted in a reduction in tumor growth, the magnitude of these effects was variable between cell lines and did not reach statistical significance. [1]
METHODS: To investigate whether Nrf2 modulates acute liver failure (ACLF) through iron death, ML385 (30 mg/kg) was injected intraperitoneally four times per week for four weeks into BALB/c mice constructed in the ACLF model.
RESULTS: More severe histopathological lesions were observed in the ML385 group compared to the ACLF group. lipid peroxidation and liver injury were exacerbated by the Nrf2 inhibitor, ML385. [3]
細胞研究 cells are treated with ML385 for 36 h. An equal amount of CellTiter-Blue reagent is added to the wells and the fluorescence is measured after 30 min. The CellTiter-Blue reagent is discarded and the Caspase-Glo (100 μL) reagent is added to the cells and incubated at 37°C for an additional 60-90 min. The resulting luminescence is recorded and the caspase activity is normalized to cell number
動物実験 Mice tumor xenografts are administered intraperitoneally ML385 (30 mg/kg).
分子量 511.59
分子式 C29H25N3O4S
CAS No. 846557-71-9

保存条件

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

DMSO: 50 mg/mL (97.73 mM)

参考文献

1. Singh A, et al. Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors. ACS Chem Biol. 2016 Nov 18;11(11):3214-3225. 2. Ji L, et al. The NRF2 antagonist ML385 inhibits PI3K-mTOR signaling and growth of lung squamous cell carcinoma cells. Cancer Med. 2023 Mar;12(5):5688-5702. 3. Szewczyk-Golec K, et al. Strategies for Modulating Oxidative Stress under Diverse Physiological and Pathological Conditions. Oxid Med Cell Longev. 2018 Dec 30;2018:3987941. 4. Wu Y, Zeng S, Wan B, et al. Sophoricoside attenuates lipopolysaccharide-induced acute lung injury by activating the AMPK/Nrf2 signaling axis[J]. International Immunopharmacology. 2021, 90: 107187 5. Wu Y, Zeng S, Wan B, et al. Sophoricoside attenuates lipopolysaccharide-induced acute lung injury by activating the AMPK/Nrf2 signaling axis[J]. International Immunopharmacology. 2020: 107187. 6. Chen X, Liang H, Xi Z, et al. BM-MSC Transplantation Alleviates Intracerebral Hemorrhage-Induced Brain Injury, Promotes Astrocytes Vimentin Expression, and Enhances Astrocytes Antioxidation via the Cx43/Nrf2/HO-1 Axis[J]. Frontiers in Cell and Developmental Biology. 2020, 8: 302.

引用文献

1. Jiang H, Lin C, Cai T, et al.Taxifolin‐mediated Nrf2 activation ameliorates oxidative stress and apoptosis for the treatment of glucocorticoid‐induced osteonecrosis of the femoral head.Phytotherapy Research.2023 2. Tao M, Yan W, Chen C, et al.Omentin-1 ameliorates experimental inflammatory bowel disease via Nrf2 activation and redox regulation.Life Sciences.2023: 121847. 3. Jin B, Chen Y, Wang J, et al.Costunolide alleviates hyperglycaemia‐induced diabetic cardiomyopathy via inhibiting inflammatory responses and oxidative stress.Journal of Cellular and Molecular Medicine.2023 4. Zhang L, Hu C, Jin B, et al.Bicyclol Alleviates Streptozotocin-induced Diabetic Cardiomyopathy By Inhibiting Chronic Inflammation And Oxidative Stress.Cardiovascular Drugs and Therapy.2023: 1-14. 5. Lan J, Zhou Y, Wang H, et al.Protective Effect of Human Umbilical Cord Mesenchymal Stem Cell Derived Conditioned Medium in a Mutant TDP-43 Induced Motoneuron-Like Cellular Model of ALS.Brain Research Bulletin.2022 6. Fan P, Lu Y, Wei H, et al.Metformin attenuates sevoflurane-induced neurogenesis damage and cognitive impairment: involvement of the Nrf2/G6PD pathway.Metabolic Brain Disease.2023: 1-17. 7. Zheng W, Yang H, Lin H, et al.ML385 suppresses the proliferation, migration, and invasion of thyroid carcinoma cells by impairing aerobic glycolysis.Molecular & Cellular Toxicology.2023: 1-10. 8. Chen F, Zhu J, Wang W. Ulinastatin Attenuates LPS-Induced Inflammation and Inhibits Endoplasmic Reticulum Stress–Induced Apoptosis in Renal Tubular Epithelial Cells via Regulation of the TLR4/NF-κB and Nrf2/HO-1 Pathways. Inflammation. 2021: 1-10. 9. Liu Y, Hou M, Pan Z, et al. Arctiin-reinforced antioxidant microcarrier antagonizes osteoarthritis progression. Journal of Nanobiotechnology. 2022, 20(1): 1-20 10. Wu Y, Zeng S, Wan B, et al. Sophoricoside attenuates lipopolysaccharide-induced acute lung injury by activating the AMPK/Nrf2 signaling axis. International Immunopharmacology. 2021, 90: 107187
11. Chen Y, Shi J, Wang X, et al.An antioxidant feedforward cycle coordinated by linker histone variant H1. 2 and NRF2 that drives nonsmall cell lung cancer progression.Proceedings of the National Academy of Sciences.2023, 120(39): e2306288120. 12. Chen X, Liang H, Xi Z, et al. BM-MSC Transplantation Alleviates Intracerebral Hemorrhage-Induced Brain Injury, Promotes Astrocytes Vimentin Expression, and Enhances Astrocytes Antioxidation via the Cx43/Nrf2/HO-1 Axis. Frontiers in Cell and Developmental Biology. 2020, 8: 302 13. Chen Z, Wang H, Hu B, et al. Transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) ameliorates sepsis-associated acute kidney injury by maintaining mitochondrial homeostasis and improving the mitochondrial function. European Journal of Histochemistry. 2022, 66(3) 14. Zhang H, Chen C, Liu Y, et al. NRF-2/HO-1 Pathway-Mediated SHOX2 Activation Is a Key Switch for Heart Rate Acceleration by Yixin-Fumai Granules. Oxidative Medicine and Cellular Longevity. 2022 15. Cao L, Zhao J, Ma L, et al. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor signaling pathway. Ecotoxicology and Environmental Safety. 2021, 225: 112737. 16. Wang N, Nie H, Zhang Y, et al. Dexmedetomidine exerts cerebral protective effects against cerebral ischemic injury by promoting the polarization of M2 microglia via the Nrf2/HO-1/NLRP3 pathway. Inflammation Research. 2021: 1-14. 17. Zhang Q, Bai X, Wang R, et al. 4‐octyl Itaconate inhibits lipopolysaccharide (LPS)‐induced osteoarthritis via activating Nrf2 signalling pathway. Journal of Cellular and Molecular Medicine. 2022 18. Wu Y, Wang Y, Gao Z, et al. Ethyl ferulate protects against lipopolysaccharide-induced acute lung injury by activating AMPK/Nrf2 signaling pathway. Acta Pharmacologica Sinica. 2021, 42(12): 2069-2081. 19. Wen H, Zhang X, Li Q, et al. Ruscogenins Improve CD-Like Enteritis by Inhibiting Apoptosis of Intestinal Epithelial Cells and Activating Nrf2/NQO1 Pathway. Oxidative Medicine and Cellular Longevity. 2022 20. Lin Y, Luo T, Weng A, et al. Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Through Enhancing Nrf2 Signaling. Frontiers in Immunology. 2020 Dec 7;11:580593. doi: 10.3389 21. Xue J, Liao Q, Luo M, et al. Cigarette smoke-induced oxidative stress activates NRF2 to mediate fibronectin disorganization in vascular formation. Open Biology. 2022, 12(4): 210310 22. Shi B, Hao Y, Li W, et al. TIPE2 May Target the Nrf2/HO-1 Pathway to Inhibit M1 Macrophage–Related Neutrophilic Inflammation in Asthma. Frontiers in Immunology. 2022, 13 23. Li X, Qin X, Tian J, et al. Liquiritin protects PC12 cells from corticosterone-induced neurotoxicity via regulation of metabolic disorders, attenuation ERK1/2-NF-κB pathway, activation Nrf2-Keap1 pathway, and inhibition mitochondrial apoptosis pathway. Food and Chemical Toxicology. 2020: 111801 24. Chen W, Ye Y, Wu Z, et al. Temporary Upregulation of Nrf2 by Naringenin Alleviates Oxidative Damage in the Retina and ARPE-19 Cells. Oxidative Medicine and Cellular Longevity. 2021, 2021. 25. Li D, Xu Z, Li Y, et al.Breviscapine attenuates lead‑induced myocardial injury by activating the Nrf2 signaling pathway.Experimental and Therapeutic Medicine.2024, 27(1): 1-8. 26. Wang J, Jin B, Chen Y, et al.Costunolide attenuates high‐fat diet‐induced inflammation and oxidative stress in non‐alcoholic fatty liver disease.Drug Development Research.2024, 85(1): e22150. 27. Zhu M, Zhao T, Zha B, et al.Piceatannol protects against myocardial ischemia/reperfusion injury by inhibiting ferroptosis via Nrf-2 signaling-mediated iron metabolism.Biochemical and Biophysical Research Communications.2024: 149598. 28. Yin Z, Zhang J, Zhao M, et al.Maresin‐1 ameliorates hypertensive vascular remodeling through its receptor LGR6.MedComm.2024, 5(3): e491. 29. Chen X, Zhou Q, Chen H, et al.Glutathione Induces Keap1 S-Glutathionylation and Mitigates Oscillating Glucose-Induced β-Cell Dysfunction by Activating Nrf2.Antioxidants.2024, 13(4): 400. 30. Wang Z, Dong Z, Li Y, et al.Verapamil Attenuates the Severity of Tendinopathy by Mitigating Mitochondrial Dysfunction through the Activation of the Nrf2/HO-1 Pathway.Biomedicines.2024, 12(4): 904.
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Inhibitor Library Anti-Neurodegenerative Disease Compound Library Transcription Factor-Targeted Compound Library Oxidation-Reduction Compound Library Antioxidant Compound Library Nonsteroidal Anti-Inflammatory Compound Library PPI Inhibitor Library Bioactive Compound Library Apoptosis Compound Library Anti-Aging Compound Library

関連製品

同一標的の関連化合物
L-Glutamic acid Necrostatin-1 Rosiglitazone hydrochloride Deferoxamine Mesylate Coenzyme Q10 Artemisinin Ciclopirox DL-Buthionine-(S,R)-sulfoximine

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

ML385 846557-71-9 Apoptosis Immunology/Inflammation Others Ferroptosis Nrf2 Inhibitor inhibit ML 385 ML-385 Keap1-Nrf2 inhibitor