ホーム 計算ツール
代理店ログイン

Deferoxamine Mesylate

カタログ番号 T1637   CAS 138-14-7
別名: desferrioxamine B, Desferrioxamine B mesylate, DFO, DFOM

Deferoxamine Mesylate (DFOM) is an iron chelator and iron death inhibitor. Deferoxamine Mesylate binds free iron into a stable complex and reduces iron accumulation. Deferoxamine Mesylate up-regulates HIF-1α levels and induces apoptosis.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Deferoxamine Mesylate, CAS 138-14-7
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
50 mg 在庫あり ¥ 7,500
100 mg 在庫あり ¥ 11,000
500 mg 在庫あり ¥ 18,000
1 g 在庫あり ¥ 26,000
1 mL * 10 mM (in DMSO) 在庫あり ¥ 9,000
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Deferoxamine Mesylate (DFOM) is an iron chelator and iron death inhibitor. Deferoxamine Mesylate binds free iron into a stable complex and reduces iron accumulation. Deferoxamine Mesylate up-regulates HIF-1α levels and induces apoptosis.
In vitro METHODS: Human cervical cancer cells HeLa were treated with Deferoxamine Mesylate (3-100 μM) for 72 h, and cell numbers were detected using the Incucyte HD imaging system.
RESULTS: Deferoxamine Mesylate inhibited cell growth in a concentration-dependent manner, and significant growth inhibition was observed at 100 μM. [1]
METHODS: Human colorectal cancer cells HT29 and HCT116 were treated with Deferoxamine Mesylate (50-200 μM) for 48 h, and the expression levels of target proteins were detected by Western Blot.
RESULTS: Deferoxamine Mesylate induced significant expression of HIF-1α in a dose-dependent manner. [2]
METHODS: Human breast cancer cells MDA-MB-231 and MCF-7 were treated with Deferoxamine Mesylate (200 μM) for 24 h. Apoptosis was detected by Flow Cytometry.
RESULTS: After Deferoxamine Mesylate treatment, the apoptosis rate of MDA-MB-231 cells was unchanged compared with untreated cells, while apoptosis of MCF-7 cells was significantly increased. [3]
In vivo METHODS: To investigate whether Deferoxamine Mesylate reduces inflammation and atherosclerosis in experimental mice, Deferoxamine Mesylate (100 mg/kg) was administered intraperitoneally to apolipoprotein E-deficient (apoE-/-) mice once a day for 10 weeks.
RESULTS: Deferoxamine Mesylate reduced the development of aortic atherosclerotic lesions by 26% Deferoxamine Mesylate also reduced serum MCP-1 levels and gene expression of proinflammatory and macrophage markers in the aorta and heart, and increased protein expression of transferrin receptors in the heart and liver. In contrast, Deferoxamine Mesylate treatment had no effect on serum cholesterol and triglyceride levels. [4]
METHODS: To study the effect of Deferoxamine Mesylate on adipocyte dysfunction in adipose tissue of ob/ob mice epididymis, Deferoxamine Mesylate (100 mg/kg) was injected intraperitoneally into ob/ob mice once daily for fifteen days.
RESULTS: Deferoxamine Mesylate significantly improved important parameters of adipose tissue biology by decreasing the secretion of reactive oxygen species and inflammatory markers, by increasing the levels of antioxidant enzymes, HIF-1α, and HIF-1α-targeted proteins, and by altering adipocyte iron-, glucose-, and lipid-related metabolic proteins. Meanwhile, hypertrophic adipocytes were reduced in size and insulin signaling pathway-related proteins were activated after Deferoxamine Mesylate treatment. [5]
細胞研究 After cells were seeded onto the collagen-GAG discs and allowed to adhere for 3?hours, they were placed into a hypoxic incubator with 1% O2 or incubated under standard cell culture conditions with deferoxamine mesylate (DFO) added to final concentrations of 30, 60, or 120?μM. Scaffolds seeded with AdMSCs cultured under standard conditions were used as a control [3].
動物実験 The animals were divided into 4 groups: sham, SAH, SAH+vehicle and SAH+DFX (100mg/kg) group. DFX was administered intraperitoneally 2 and 6 hours after hemorrhage followed by every 12 hours for a maximum of 7 days. The same time course and dosage of saline were administered in the SAH+vehicle group. Afterward, rats underwent behavioral testing and were euthanized at day 1, 3, 7 and 28 for brain water content calculation, immunohistochemistry or western blot assays. The study was performed in three parts. Part 1 measured the brain water content, Evan's blue extravasation, and ultrastructural abnormalities at day 1, 3 and 7 after SAH to evaluate the time-dependent changes in brain edema and BBB disruption (n = 4 per time point and group). Part 2 investigated the role of iron in SAH-induced BBB disruption at day 1, 3 and 7 by brain water content (n = 4, per time point and group), Evan's blue extravasation (n = 4, per time point and group), transmission electron microscopy (n = 4, per time point and group), immunohistochemistry (n = 4, per time point and group) and western blot analysis (n = 3, per time point and group). Part 3 compared the acute (n = 61, per group at day 1; n = 42, per group at day 3; n = 23, per group at day 7) and long term (n = 4, per group at day 28) neurological function after SAH in each group to determine the effect of iron chelation on SAH-induced neurologic impairment [4].
別名 desferrioxamine B, Desferrioxamine B mesylate, DFO, DFOM
分子量 656.79
分子式 C26H52N6O11S
CAS No. 138-14-7

保存条件

store at low temperature,keep away from direct sunlight

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

DMSO: 152.3 mM

H2O: 20.83 mg/mL (31.72 mM)

参考文献

1. Fujisawa K, et al. An iron chelation-based combinatorial anticancer therapy comprising deferoxamine and a lactate excretion inhibitor inhibits the proliferation of cancer cells. Cancer Metab. 2022 May 12;10(1):8. 2. Zhang W, et al. Deferoxamine enhances cell migration and invasion through promotion of HIF-1α expression and epithelial-mesenchymal transition in colorectal cancer. Oncol Rep. 2014 Jan;31(1):111-6. 3. Chen C, et al. Deferoxamine Enhanced Mitochondrial Iron Accumulation and Promoted Cell Migration in Triple-Negative MDA-MB-231 Breast Cancer Cells Via a ROS-Dependent Mechanism. Int J Mol Sci. 2019 Oct 8;20(19):4952. 4. Zhang WJ, et al. The iron chelator, desferrioxamine, reduces inflammation and atherosclerotic lesion development in experimental mice. Exp Biol Med (Maywood). 2010 May;235(5):633-41. 5. Yan HF, et al. Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr Connect. 2018 Apr;7(4):604-616. 6. Duscher D, et al. Comparison of the Hydroxylase Inhibitor Dimethyloxalylglycine and the Iron Chelator Deferoxamine in Diabetic and Aged Wound Healing. Plast Reconstr Surg. 2017 Mar;139(3):695e-706e 8. Sang M, Luo R, Bai Y, et al. BHQ-Cyanine-Based “Off–On” Long-Circulating Assembly as a Ferroptosis Amplifier for Cancer Treatment: A Lipid-Peroxidation Burst Device[J]. ACS applied materials & interfaces. 2019, 11(46): 42873-42884. 9. Sang M, Luo R, Bai Y, et al. BHQ-Cyanine Based “Off-On” Long-Circulating Assembly as Ferroptosis Amplifier for Cancer Treatment: a Lipid-Peroxidation Burst Device[J]. ACS applied materials & interfaces. 2019. 10. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics[J]. ACS nano. 2018 Dec 26;12(12):12380-12392.

引用文献

1. Bi G, Liang J, Shan G, et al.Retinol saturase mediates retinoid metabolism to impair a ferroptosis defense system in cancer cells.Cancer Research.2023: CAN-22-3977. 2. Zhu X, Huang N, Ji Y, et al.Brusatol induces ferroptosis in oesophageal squamous cell carcinoma by repressing GSH synthesis and increasing the labile iron pool via inhibition of the NRF2 pathway.Biomedicine & Pharmacotherapy.2023, 167: 115567. 3. Chen T, Leng J, Tan J, et al.Discovery of Novel Potent Covalent Glutathione Peroxidase 4 Inhibitors as Highly Selective Ferroptosis Inducers for the Treatment of Triple-Negative Breast Cancer.Journal of Medicinal Chemistry.2023 4. Zhao G, Liang J, Shan G, et al.KLF11 regulates lung adenocarcinoma ferroptosis and chemosensitivity by suppressing GPX4.Communications Biology.2023, 6(1): 570. 5. Liu J, Pan Z, Tong B, et al.Artesunate protects against ocular fibrosis by suppressing fibroblast activation and inducing mitochondria‐dependent ferroptosis.The FASEB Journal.2023, 37(6): e22954. 6. Li Y, Bao Y, Li Y, et al.RSL3 Inhibits Porcine Epidemic Diarrhea Virus Replication by Activating Ferroptosis.Viruses.2023, 15(10): 2080. 7. Gao X, Jiang P, Wei X, et al.Novel fusion protein PK5-RL-Gal-3C inhibits hepatocellular carcinoma via anti-angiogenesis and cytotoxicity.BMC cancer.2023, 23(1): 1-16. 8. Besskaya V, Zhang H, Bian Y, et al.Hepatic nuclear factor 4 alpha promotes the ferroptosis of lung adenocarcinoma via transcriptional activation of cytochrome P450 oxidoreductase.PeerJ.2023, 11: e15377. 9. Zhou Y, Wu H, Wang F, et al. GPX7 Is Targeted by miR-29b and GPX7 Knockdown Enhances Ferroptosis Induced by Erastin in Glioma. Frontiers in oncology. 2021, 11: 802124-802124. 10. Bi G, Liang J, Zhao M, et al. MiR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma by targeting CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Molecular Therapy-Nucleic Acids. 2022
11. Huang C Y, Chen L J, Chen G, et al. SHP-1/STAT3-Signaling-Axis-Regulated Coupling between BECN1 and SLC7A11 Contributes to Sorafenib-Induced Ferroptosis in Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2022, 23(19): 11092. 12. Sang M, Luo R, Bai Y, et al. BHQ-Cyanine-Based “Off–On” Long-Circulating Assembly as a Ferroptosis Amplifier for Cancer Treatment: A Lipid-Peroxidation Burst Device. ACS applied materials & interfaces. 2019, 11(46): 42873-42884. 13. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS nano. 2018 Dec 26;12(12):12380-12392. 14. Fang Y, Tan Q, Zhou H, et al. Discovery and optimization of 2-(trifluoromethyl) benzimidazole derivatives as novel ferroptosis inducers in vitro and in vivo. European Journal of Medicinal Chemistry. 2022: 114905. 15. Lv Q, Niu H, Yue L, et al. Abnormal Ferroptosis in Myelodysplastic Syndrome. Frontiers in Oncology. 2020 Sep 2;10:1656 16. Deng F, Xu G, Cheng Z, et al. Hepatitis B Surface Antigen Suppresses the Activation of Nuclear Factor Kappa B Pathway via Interaction With the TAK1-TAB2 Complex. Frontiers in Immunology. 2021, 12: 233. 17. Liu Y, Li H, Luo Z, et al. Artesunate, a new antimalarial clinical drug, exhibits potent anti‐AML activity by targeting the ROS/Bim and TFRC/Fe2+ pathways. British Journal of Pharmacology. 2022 18. Sang M, Luo R, Bai Y, et al. Mitochondrial membrane anchored photosensitive nano-device for lipid hydroperoxides burst and inducing ferroptosis to surmount therapy-resistant cancer. Theranostics. 2019, 9(21): 6209. 19. Wu W Y, Wang Z X, Li T S, et al. SSBP1 drives high fructose-induced glomerular podocyte ferroptosis via activating DNA-PK/p53 pathway. Redox Biology. 2022: 102303. 20. Ouyang S, Li H, Lou L, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biology. 2022: 102317 21. Li X, Wang H, Lu Z, et al. Development of Multifunctional Pyrimidinylthiourea Derivatives as Potential Anti-Alzheimer Agents. Journal of Medicinal Chemistry. 2016 Sep 22;59(18):8326-44 22. Cheng Y, Qu W, Li J, et al. Ferristatin II, an Iron Uptake Inhibitor, Exerts Neuroprotection against Traumatic Brain Injury via Suppressing Ferroptosis. ACS Chemical Neuroscience. 2022 23. Shan G, Bi G, Zhao G, et al.Inhibition of PKA/CREB1 pathway confers sensitivity to ferroptosis in non-small cell lung cancer.Respiratory Research.2023, 24(1): 1-15. 24. Liu S, Tao Y, Wu S, et al.Sanguinarine chloride induces ferroptosis by regulating ROS/BACH1/HMOX1 signaling pathway in prostate cancer.Chinese Medicine.2024, 19(1): 1-18. 25. Ying Z, Yin M, Zhu Z, et al.Iron Stress Affects the Growth and Differentiation of Toxoplasma gondii.International Journal of Molecular Sciences.2024, 25(5): 2493. 26. Bi G, Liang J, Bian Y, et al.Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer.Nature Communications.2024, 15(1): 2461.
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Anti-Cancer Drug Library Inhibitor Library Anti-Neurodegenerative Disease Compound Library Anti-Cancer Clinical Compound Library Drug Repurposing Compound Library Anti-Cancer Approved Drug Library Neuronal Signaling Compound Library Antioxidant Compound Library Apoptosis Compound Library Anti-Cancer Compound Library

関連製品

同一標的の関連化合物
Melatonin Liensinine Liensinine diperchlorate Simvastatin P62-mediated mitophagy inducer Ruxolitinib phosphate Curcumin Valproic acid sodium salt

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Deferoxamine Mesylate 138-14-7 Apoptosis Autophagy Chromatin/Epigenetic Metabolism Neuroscience Others HIF/HIF Prolyl-Hydroxylase Ferroptosis Beta Amyloid Mitophagy HIFs neovascularization TAMSCs desferrioxamine B diabetes mellitus Akt PKB Protein kinase B SH-SY5Y Hypoxia-inducible factors Deferoxamine Desferrioxamine B mesylate DFO Desferrioxamine B Mesylate Inhibitor MEFs cancer Alzheimer’s disease HIF-PH Reactive Oxygen Species BMMSCs inhibit DFOM COVID-19 inhibitor