ホーム 計算ツール
代理店ログイン

Z-VAD(OMe)-FMK

カタログ番号 T6013   CAS 187389-52-2
別名: Z-VAD-FMK, Z-Val-Ala-Asp(OMe)-FMK

Z-VAD(OMe)-FMK (Z-Val-Ala-Asp(OMe)-FMK) is a broad-spectrum inhibitor of caspases that is cell-permeable and irreversible. Z-VAD(OMe)-FMK binds to activated caspases, thereby inhibiting apoptosis.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Z-VAD(OMe)-FMK, CAS 187389-52-2
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
1 mg 在庫あり ¥ 12,000
2 mg 在庫あり ¥ 18,500
5 mg 在庫あり ¥ 34,000
10 mg 在庫あり ¥ 57,000
25 mg 在庫あり ¥ 84,500
50 mg 在庫あり ¥ 114,000
100 mg 在庫あり ¥ 159,000
200 mg 在庫あり ¥ 225,500
1 mL * 10 mM (in DMSO) 在庫あり ¥ 34,000
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Z-VAD(OMe)-FMK (Z-Val-Ala-Asp(OMe)-FMK) is a broad-spectrum inhibitor of caspases that is cell-permeable and irreversible. Z-VAD(OMe)-FMK binds to activated caspases, thereby inhibiting apoptosis.
In vitro METHODS: Human leukemia cells HL60 were treated with Z-VAD(OMe)-FMK (50 µM) and camptothecin (50 M) for 3 h. Cell morphology was observed by electron microscopy.
RESULTS: Cells treated with camptothecin exhibited typical apoptotic features including cell shrinkage, chromatin condensation and nuclear fragmentation.Z-VAD(OMe)-FMK combination treatment eliminated the camptothecin-induced apoptotic pattern. Z-VAD(OMe)-FMK alone did not affect cell morphology. [1]
METHODS: Cholangiocarcinoma cells KKU100, KKU213A and KKU213B were pretreated with Z-VAD(OMe)-FMK (20 µM) for 1 h, followed by CH-MSCs (0%, 50% and 75%) for 24 h. Apoptosis was detected using Flow Cytometry.
RESULTS: Z-VAD(OMe)-FMK pretreatment prevented the apoptosis induced by CH-MSCs. [2]
METHODS: Human ovarian teratoma cells PA-1 were treated with Z-VAD(OMe)-FMK (50 μM) and UVB (100 J/m2) for 16 h, and the expression levels of target proteins were detected by Western Blot.
RESULTS: Z-VAD(OMe)-FMK eliminated PARP cleavage induced by UVB. [3]
In vivo METHODS: To investigate whether in vivo administration of Z-VAD(OMe)-FMK prevents infection-induced preterm labor, a single intraperitoneal injection of Z-VAD(OMe)-FMK (10 mg/kg) was administered to CD1 mice in which preterm labor was induced by heat-killed group B streptococcus (HK-GBS).
RESULTS: Z-VAD(OMe)-FMK pretreatment delayed but did not prevent HK-GBS-induced preterm labor in a pregnant mouse model. [4]
METHODS: To prevent LPS-induced acute lung injury, Z-VAD(OMe)-FMK (0.25 mg 15 min before LPS stimulation, 0.1 mg three times per hour) was injected intravenously into ICR mice with LPS-induced apoptosis and acute lung injury.
RESULTS: Z-VAD(OMe)-FMK inhibited caspase-3 activity in lung tissues. Z-VAD(OMe)-FMK significantly prolonged the survival of mice. Apoptosis may play an important role in acute lung injury, and thus inhibition of caspase activity may provide a new therapeutic approach for the treatment of this disease. [5]
細胞研究 The human monocytic tumour cell line, THP.1 and the leukaemic T-cell line, Jurkat (clone E-6) were maintained in RPMI 1640 supplemented with 10% (v/v) heat-inactivated fetal calf serum, 100 units/ml penicillin and 100 μg/ml streptomycin in an atmosphere of 5% CO2 in air at 37 °C. The cells were maintained in logarithmic growth phase by routine passage every 2–3 days. To induce apoptosis in THP.1 cells, 2×10^6 cells/ml were incubated either alone or in the presence of cycloheximide (25 μM) and TLCK (100 μM) as previously described. In order to assess the possible effects of various ICE-like protease inhibitors, THP.1 cells were also pretreated for 1 h with Z-VAD.FMK (10 μM), Ac-DEVD-CHO (20 μM) and Ac-YVAD-CHO (20 μM) before being exposed to the apoptotic stimulus. To induce apoptosis in Jurkat cells, 2×10^6 cells/ml were stimulated with 200 ng/ml anti-human Fas as described previously [1].
動物実験 Mice used in this study were 5- to 6-week-old (20 to 22 g) ICR males. Mice were injected with 30 mg/kg LPS from E. coli serotype O111:B4 through the tail vein. Z-VAD.fmk was dissolved at 2 mg/ml in 1% dimethyl sulfoxide in sterile saline, and administered to mice by the method of Rodriguez et al. A single intravenous injection of Z-VAD.fmk (0.25 mg) was made 15 minutes before LPS injection, followed by three intravenous injections of Z-VAD.fmk (0.1 mg each) per hour. Control mice were injected with the same volume of 1% DMSO in sterile saline [4].
別名 Z-VAD-FMK, Z-Val-Ala-Asp(OMe)-FMK
分子量 467.49
分子式 C22H30FN3O7
CAS No. 187389-52-2

保存条件

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

H2O: < 1 mg/mL (insoluble or slightly soluble)

Ethanol: < 1 mg/mL (insoluble or slightly soluble)

DMSO: 93 mg/mL (198.93 mM)

参考文献

1. Shimizu T, et al. Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases. Leukemia. 1997 Aug;11(8):1238-44. 2. Jantalika T, et al. Human chorion-derived mesenchymal stem cells suppress JAK2/STAT3 signaling and induce apoptosis of cholangiocarcinoma cell lines. Sci Rep. 2022 Jul 5;12(1):11341. 3. Castrogiovanni C, et al. Decrease of mitochondrial p53 during late apoptosis is linked to its dephosphorylation on serine 20. Cancer Biol Ther. 2015;16(9):1296-307. 4. Equils O, et al. Pretreatment with pancaspase inhibitor (Z-VAD-FMK) delays but does not prevent intraperitoneal heat-killed group B Streptococcus-induced preterm delivery in a pregnant mouse model. Infect Dis Obstet Gynecol. 2009;2009:749432. 5. Kawasaki M, et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am J Pathol. 2000 Aug;157(2):597-603. 6. Lu Z, Zhang G, Zhang Y, et al. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells[J]. Toxicology and applied pharmacology. 2018, 352: 46-58. 7. Shao C S, Zhou X H, Zheng X X, et al. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells[J]. Journal of Ethnopharmacology. 2020, 262: 113213. 8. Wu X, Luo Q, Zhao P, et al. JOSD1 inhibits mitochondrial apoptotic signalling to drive acquired chemoresistance in gynaecological cancer by stabilizing MCL1[J]. Cell Death & Differentiation. 2020, 27(1): 55-70. 9. Zhu Q, Ding L, Zi Z, et al. Viral-Mediated AURKB Cleavage Promotes Cell Segregation and Tumorigenesis[J]. Cell reports. 2019 Mar 26;26(13):3657-3671.e5. 10. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics[J]. ACS nano. 2018 Dec 26;12(12):12380-12392.

引用文献

1. Bi G, Liang J, Shan G, et al.Retinol saturase mediates retinoid metabolism to impair a ferroptosis defense system in cancer cells.Cancer Research.2023: CAN-22-3977. 2. Li Y, Yang W, Zheng Y, et al.Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis.Journal of Experimental & Clinical Cancer Research.2023, 42(1): 1-19. 3. Quan D, Hou R, Shao H, et al.Structure-Based Design of Novel Alkynyl Thio-Benzoxazepinone Receptor-Interacting Protein Kinase-1 Inhibitors: Extending the Chemical Space from the Allosteric to ATP Binding Pockets.Journal of Medicinal Chemistry.2023 4. Zhang X, Han Q, Hou R, et al.Targeting Receptor-Interacting Protein Kinase 1 by Novel Benzothiazole Derivatives: Treatment of Acute Lung Injury through the Necroptosis Pathway.Journal of Medicinal Chemistry.2023 5. Yang W, Sun X, Liu S, et al.TLR8 agonist Motolimod-induced inflammatory death for treatment of acute myeloid leukemia.Biomedicine & Pharmacotherapy.2023, 163: 114759. 6. Cui N, Li S, Zhang Y, et al.Discovery of Sibiriline derivatives as novel receptor-interacting protein kinase 1 inhibitors.European Journal of Medicinal Chemistry.2023: 115190. 7. Urade R, Chang W T, Ko C C, et al.A fluorene derivative inhibits human hepatocellular carcinoma cells by ROS-mediated apoptosis, anoikis and autophagy.Life Sciences.2023: 121835. 8. Xu Y, Liang C, Zhang W, et al.Profiling of the chemical space on the phenyl group of substituted benzothiazole RIPK3 inhibitors.Bioorganic Chemistry.2022: 106339. 9. Tang J, Wu Y, Zhao W, et al.Scaffold hopping derived novel benzoxazepinone RIPK1 inhibitors as anti-necroptosis agents.Bioorganic & Medicinal Chemistry.2023: 117385. 10. Yang D L, Zhang Y, He L, et al. Demethylzeylasteral (T-96) Initiates Extrinsic Apoptosis Against Prostate Cancer cells by Inducing ROS-Mediated ER Stress and Suppressing Autophagic Flux. Biological Research. 2021, 54(1): 1-14.
11. Zhu Q, Ding L, Zi Z, et al. Viral-Mediated AURKB Cleavage Promotes Cell Segregation and Tumorigenesis. Cell Reports. 2019 Mar 26;26(13):3657-3671.e5 12. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS nano. 2018 Dec 26;12(12):12380-12392. 13. Xia Z, Zhang X, Liu P, et al. GNA13 regulates BCL2 expression and the sensitivity of GCB-DLBCL cells to BCL2 inhibitors in a palmitoylation-dependent manner. Cell Death & Disease. 2021, 12(1): 1-11. 14. Liao X, Fan Y, Hou J, et al. Identification of Chaetocin as a Potent non-ROS-mediated Anticancer Drug Candidate for Gastric Cancer. Journal of Cancer. 2019, 10(16): 3678-3690. 15. Ouyang S, Li H, Lou L, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biology. 2022: 102317 16. Wu X, Lu Y, Qin X. Combination of Compound Kushen Injection and cisplatin shows synergistic antitumor activity in p53-R273H/P309S mutant colorectal cancer cells through inducing apoptosis. Journal of Ethnopharmacology. 2021: 114690. 17. Wu Q, Zhang M, Wen Y, et al. Identifying chronic alcoholism drug disulfiram as a potent DJ-1 inhibitor for cancer therapeutics. European Journal of Pharmacology. 2022: 175035 18. Shao C S, Zhou X H, Zheng X X, et al. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells. Journal of Ethnopharmacology. 2020, 262: 113213. 19. Hussain M, Lu Y, Tariq M, et al. A small-molecule Skp1 inhibitor elicits cell death by p53-dependent mechanism. Iscience. 2022, 25(7): 104591. 20. Wen L, Guo R, You L, et al. Major triterpenoids in Chinese hawthorn “Crataegus pinnatifida” and their effects on cell proliferation and apoptosis induction in MDA-MB-231 cancer cells. Food and chemical toxicology. 2017 Feb;100:149-160. 21. Zhu L, Han Z, He Y, et al. Caspase-1-Dependent Pyroptosis Mediates Adjuvant Activity of Platycodin D as an Adjuvant for Intramuscular Vaccines. Cells. 2022, 11(1): 134. 22. Lu Z, Zhang G, Zhang Y, et al. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells. Toxicology and applied pharmacology. 2018, 352: 46-58. 23. Zhang P, Zhang J, Quan H, et al. Effects of butein on human osteosarcoma cell proliferation, apoptosis, and autophagy through oxidative stress. Human & Experimental Toxicology. 2022, 41: 09603271221074346. 24. Shan G, Bi G, Zhao G, et al.Inhibition of PKA/CREB1 pathway confers sensitivity to ferroptosis in non-small cell lung cancer.Respiratory Research.2023, 24(1): 1-15. 25. Wang Y, Zhang B, Liu S, et al.The traditional herb Sargentodoxa cuneata alleviates DSS-induced colitis by attenuating epithelial barrier damage via blocking necroptotic signaling.Journal of Ethnopharmacology.2023: 117373. 26. Heber N, Kuhn B J, Strobel T D, et al.The impact of cycling hypoxia on the phenotype of HPV‐positive cervical cancer cells.Journal of Medical Virology.2023, 95(12): e29280. 27. Xin Y F, Dai P, Shao H, et al.Discovery of novel biaryl benzoxazepinones as dual-mode receptor-interacting protein kinase-1 (RIPK1) inhibitors.Bioorganic & Medicinal Chemistry.2024: 117611. 28. Tang Y, Zhuang C.Design, synthesis and anti-necroptosis activity of fused heterocyclic MLKL inhibitors.Bioorganic & Medicinal Chemistry.2024: 117659. 29. Xu L, Wen B, Wu Q, et al.Long non-coding RNA KB-1460A1. 5 promotes ferroptosis by inhibiting mTOR/SREBP-1/SCD1-mediated polyunsaturated fatty acid desaturation in glioma.Carcinogenesis.2024: bgae016. 30. Jiang R, Xu B, Zhi S, et al.Scaffold hopping derived novel benzoxazepinone receptor-interacting protein kinase 1 (RIP1) inhibitors as anti-necroptosis agents: Anti-inflammatory effect in systemic inflammatory response syndrome (SIRS) and epilepsy.European Journal of Medicinal Chemistry.2024: 116304. 31. Bi G, Liang J, Bian Y, et al.Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer.Nature Communications.2024, 15(1): 2461.
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Inhibitor Library Anti-Neurodegenerative Disease Compound Library Peptide Compound Library Bioactive Compounds Library Max Covalent Inhibitor Library Anti-Cancer Compound Library NO PAINS Compound Library Bioactive Compound Library Protease Inhibitor Library Pyroptosis Compound Library

関連製品

同一標的の関連化合物
Ac-VAD-CHO Paris saponin VII Fenbufen Emricasan Cedrin Tauroursodeoxycholate sodium SDZ 224-015 Isoverticine

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Z-VAD(OMe)-FMK 187389-52-2 Apoptosis Proteases/Proteasome Caspase Inhibitor Z-VAD-FMK ZVAD(OMe)FMK inhibit Z-Val-Ala-Asp(OMe)-FMK Z VAD(OMe) FMK inhibitor