ホーム 計算ツール
代理店ログイン

3-Methyladenine

カタログ番号 T1879   CAS 5142-23-4
別名: 3-MA, NSC 66389

3-Methyladenine (3-MA) is a PI3K inhibitor that selectively inhibits class IB PI3Kγ (IC50=60 μM) and class III VPS34 (IC50=25 μM). 3-Methyladenine inhibits autophagy.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
3-Methyladenine, CAS 5142-23-4
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
25 mg 在庫あり ¥ 8,000
50 mg 在庫あり ¥ 11,000
100 mg 在庫あり ¥ 18,500
200 mg 在庫あり ¥ 32,500
500 mg 在庫あり ¥ 61,000
1 mL * 10 mM (in DMSO) 在庫あり ¥ 11,500
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 3-Methyladenine (3-MA) is a PI3K inhibitor that selectively inhibits class IB PI3Kγ (IC50=60 μM) and class III VPS34 (IC50=25 μM). 3-Methyladenine inhibits autophagy.
ターゲット&IC50 PI3Kγ:60 μM (in HeLa cells), VPS34:25 μM (in HeLa cells)
In vitro METHODS: Human cervical cancer cells HeLa were treated with 3-Methyladenine (2.5-10 mM) for 48 h. Cell growth inhibition was detected by Trypan blue dye exclusion assay.
RESULTS: 3-Methyladenine decreased HeLa cell viability in a time- and dose-dependent manner. [1]
METHODS: Adipocytes 3T3-L1 were treated with 3-Methyladenine (5 mM) for 4 h in the absence of serum, and the expression levels of target proteins were detected by Western Blot.
RESULTS: 3-Methyladenine significantly decreased the intracellular level of LC3-II, a marker of autophagy, and increased the expression of p62, indicating that 3-Methyladenine was effective in inhibiting autophagy. [2]
METHODS: Mouse melanoma cells B16 were treated with 2DG (5 mM), rotenone (1 μM) and 3-Methyladenine (1.2-5 mM) for 24 h. Cytotoxicity was detected by LDH release assay.
RESULTS: 3-Methyladenine dose-dependently reduced the up-regulation of LDH release induced by 2DG/rotenone. 3-Methyladenine protected tumor cells from inhibition of glycolysis and mitochondrial respiration. [3]
In vivo METHODS: To investigate the effects of 3-Methyladenine on atherosclerosis, 3-Methyladenine (30 mg/kg) was injected intraperitoneally into HFD-fed ApoE-/- mice twice weekly for eight weeks.
RESULTS: In mice fed a high-fat diet, 3-Methyladenine treatment significantly reduced the size of atherosclerotic plaques and increased the stability of the lesions. 3-Methyladenine has multiple atheroprotective effects on atherosclerosis, including modulation of macrophage autophagy and foam cell formation as well as alteration of the immune microenvironment. [4]
METHODS: To investigate the regulatory role of autophagy, a single dose of 3-Methyladenine (15 mg/kg ) was administered intraperitoneally to LPS-induced endotoxic shock in C57/BL6 mice.
RESULTS: Animals treated with LPS in combination with 3-Methyladenine showed increased survival and decreased serum inflammatory mediators TNF-α and IL-6 after endotoxemia. [5]
細胞研究 Cells were seeded in an 8-well coverglass-bottomed chamber for 24 hours (6×10^3 cells per well). Images were acquired automatically at multiple locations on the coverglass using a Nikon TE2000E inverted microscope fitted with a 20× Nikon Plan Apo objective, a linearly-encoded stage, and a Hamamatsu Orca-ER CCD camera. A mercury-arc lamp with two neutral density filters (for a total 128-fold reduction in intensity) was used for fluorescence illumination. The microscope was controlled using NIS-Elements Advanced Research software and housed in a custom-designed 37°C chamber with a secondary internal chamber that delivered humidified 5% CO2. Fluorescence and differential interference contrast images were obtained every 10 min for a period of 48 hours. To analyze live cell imaging movies, the time-lapse records of live cell imaging experiments were exported as an image series and analyzed manually using NIS-Elements Advanced Research software. The criteria for analyses were described previously, and lagging chromosomes in prometaphase were defined as the red fluorescence-positive materials that lingered outside the roughly formed metaphase plate for more than 3 frames (30 min) [2].
動物実験 All rats were fasted for 12 h with free access to water prior to operation. After anesthesia by intraperitoneal (i.p.) injection of 2% sodium pentobarbital (0.25 mL/100 g), they were laid and fixed on the table, routinely shaven, disinfected, and draped. The rat SAP model was induced by 0.1 mL/min speed uniformly retrograde infusion of a freshly prepared 3.5% sodium taurocholate solution (0.1 mL/100 g) into the biliopancreatic duct after laparotomy. Equivalent volume of normal saline solution was substituted for 3.5% sodium taurocholate solution in the sham-operation (SO) control group. The incision was closed with a continuous 3-0-silk suture, and 2 mL/100 g of saline was injected into the back subcutaneously to compensate for the fluid loss. 180 rats were randomly divided into four groups: (1) Acanthopanax treatment group (Aca group, n = 45) where the rats were injected with 0.2% Acanthopanax injection at a dose of 3.5 mg/100 g 3 h after successful modeling via the vena caudalis once, knowing that this dosage was effective as proven in our previous experiment; (2) 3-Methyladenine treatment group (3-methyladenine group, n = 45) where the rats were injected with 100 nmol/μL 3-methyladenine solution at a dose of 1.5 mg/100 g 3 h after successful modeling via the intraperitoneal route once, knowing that this dosage was effective as proven in the literature [6]; (3) SAP model group (SAP group, n = 45) where these rats received an equivalent volume of the normal saline instead of Acanthopanax injection 3 h after successful modeling via the vena caudalis once; (4) SO group (control, n = 45) where these rats received an equivalent volume of the normal saline instead of Acanthopanax injection 3 h after successful sham-operation via the vena caudalis once. The 45 animals in each of the four groups were equally randomized into 3, 12, and 24 h subgroups for postoperative observations [4].
別名 3-MA, NSC 66389
分子量 149.15
分子式 C6H7N5
CAS No. 5142-23-4

保存条件

store at low temperature,keep away from direct sunlight

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

DMSO: 13.75 mg/mL (92.19 mM), Heating is recommended.(The compound is unstable in solution, please use soon.)

Ethanol: 4 mg/mL (26.81 mM)

H2O: 8 mg/mL

参考文献

1. Hou H, et al. Inhibitors of phosphatidylinositol 3'-kinases promote mitotic cell death in HeLa cells. PLoS One. 2012;7(4):e35665. 2. Heckmann BL, et al. The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Br J Pharmacol. 2013 Jan;168(1):163-71. 3. Kosic M, et al. 3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms. J Pharmacol Sci. 2021 Sep;147(1):156-167. 4. Dai S, et al. Systemic application of 3-methyladenine markedly inhibited atherosclerotic lesion in ApoE-/- mice by modulating autophagy, foam cell formation and immune-negative molecules. Cell Death Dis. 2016 Dec 1;7(12):e2498. 5. Li Q, et al. Inhibition of autophagy with 3-methyladenine is protective in a lethal model of murine endotoxemia and polymicrobial sepsis. Innate Immun. 2018 May;24(4):231-239. 6. hang C, Liu Z, Zhang Y, et al. Z“Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis[J]. Cell Death & Disease. 2020, 11(3): 1-15. 7. Shang Z, Zhang T, Jiang M, et al. High-carbohydrate, High-fat Diet-induced Hyperlipidemia Hampers the Differentiation Balance of Bone Marrow Mesenchymal Stem Cells by Suppressing Autophagy via the AMPK/mTOR Pathway in Rat Models[J]. 2020. 8. Xia Y, Chen J, Yu Y, et al. Compensatory combination of mTOR and TrxR inhibitors to cause oxidative stress and regression of tumors[J]. Theranostics. 2021, 11(9): 4335. 9. Zhang H, Cui Z, Cheng D, et al. RNF186 regulates EFNB1 (ephrin B1)-EPHB2-induced autophagy in the colonic epithelial cells for the maintenance of intestinal homeostasis[J]. Autophagy . 2020 10. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics[J]. ACS nano. 2018 Dec 26;12(12):12380-12392.

引用文献

1. Yan C, Zheng L, Jiang S, et al.Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity.Cancer Cell.2023 2. Liu X, Fang Y, Lv X, et al.Deubiquitinase OTUD6A in macrophages promotes intestinal inflammation and colitis via deubiquitination of NLRP3.Cell Death & Differentiation.2023: 1-15. 3. Zhang J, Zhou E C, He Y, et al.ZYG11B potentiates the antiviral innate immune response by enhancing cGAS-DNA binding and condensation.Cell Reports.2023, 42(3). 4. Wang X, Ji Y, Qi J, et al.Mitochondrial carrier 1 (MTCH1) governs ferroptosis by triggering the FoxO1-GPX4 axis-mediated retrograde signaling in cervical cancer cells.Cell Death & Disease.2023, 14(8): 1-13. 5. Long T, Chen X, Zhang Y, et al.Protective effects of Radix Stellariae extract against Alzheimer's disease via autophagy activation in Caenorhabditis elegans and cellular models.Biomedicine & Pharmacotherapy.2023, 165: 115261. 6. Wu Z, Lin C, Zhang F, et al.TIGD1 Function as a Potential Cuproptosis Regulator Following a Novel Cuproptosis-Related Gene Risk Signature in Colorectal Cancer.Cancers.2023, 15(8): 2286. 7. Zhang W, Li X, Jiang M, et al.SOCS3 deficiency-dependent autophagy repression promote the survival of early-stage myeloid-derived suppressor cells in breast cancer by activating the Wnt/mTOR pathway.Journal of Leukocyte Biology.2023: qiad020. 8. Jiao J, Ruan L, Cheng C, et al.Paired protein kinases PRKCI-RIPK2 promote pancreatic cancer growth and metastasis via enhancing NF-κB/JNK/ERK phosphorylation.Molecular Medicine.2023, 29(1): 1-17. 9. Cao P, Wang Y, Zhang C, et al.Quercetin ameliorates non-alcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy.The Journal of Nutritional Biochemistry.2023: 109414. 10. Zhang Y, Wu K, Liu Y, et al.UHRF2 promotes the malignancy of hepatocellular carcinoma by PARP1 mediated autophagy.Cellular Signalling.2023: 110782.
11. Tu W, Qin M, Li Y, et al.Metformin regulates autophagy via LGMN to inhibit choriocarcinoma.Gene.2022: 147090. 12. Xiong R, Zhou X G, Tang Y, et al. Lychee seed polyphenol protects the blood–brain barrier through inhibiting Aβ (25–35)‐induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1‐mediated autophagy in bEnd. 3 cells and APP/PS1 mice. Phytotherapy Research. 2020 13. Zhao Deng,Qi Liu,Miaomiao Wang,Hong-Kui Wei,Jian Peng, et al. GPA Peptide-Induced Nur77 Localization at Mitochondria Inhibits Inflammation and Oxidative Stress through Activating Autophagy in the Intestine. Oxidative Medicine and Cellular Longevity. 2020 14. Lyu L, Hu Y, Yin S, et al. Autophagy inhibition enhances anti‐pituitary adenoma effect of tetrandrine. Phytotherapy Research. 2021, 35(7): 4007-4021. 15. Wu J N, Lin L, Luo S B, et al. SphK1‐driven autophagy potentiates focal adhesion paxillin‐mediated metastasis in colorectal cancer. Cancer Medicine. 2021 16. Chu S, Bi H, Li X, et al. Up-regulation of Nrf2/P62/Keap1 involves in the anti-fibrotic effect of combination of monoammonium glycyrrhizinate and cysteine hydrochloride induced by CCl4. European Journal of Pharmacology. 2021: 174628. 17. Liu M, Yang Y, Tan B, et al. Gαi and Gβγ subunits have opposing effects on dexmedetomidine-induced sedation. European Journal of Pharmacology. 2018 Jul 15;831:28-37 18. Jing Q, Li G, Chen X, et al. Wnt3a promotes radioresistance via autophagy in squamous cell carcinoma of the head and neck. Journal of Cellular and Molecular Medicine. 2019 May 21 19. Wu A G, Teng J F, Wong V K W, et al. Novel Steroidal Saponin Isolated from Trillium tschonoskii Maxim. Exhibits Anti-Oxidative Effect via Autophagy Induction in cellular and Caenorhabditis elegans models. Phytomedicine. 2019: 153088. 20. Tu W, Qin M, Li Y, et al.Metformin regulates autophagy via LGMN to inhibit choriocarcinoma.Gene.2022: 147090. 21. Zhou J, Ji T, He H N, et al. Induction of autophagy promotes porcine parthenogenetic embryo development under low oxygen conditions. Reproduction, Fertility and Development. 2020, 32(7): 657-666 22. Jiang H, Wang C, Zhang A, et al. ATF4 protects against sorafenib-induced cardiotoxicity by suppressing ferroptosis. Biomedicine & Pharmacotherapy. 2022, 153: 113280 23. Yang J, Li J, Guo H, et al. An Experimental Study Reveals the Protective Effect of Autophagy against Realgar-Induced Liver Injury via Suppressing ROS-Mediated NLRP3 Inflammasome Pathway. International Journal of Molecular Sciences. 2022, 23(10): 5697 24. Zhang P, Ni H, Zhang Y, et al. Ivermectin confers its cytotoxic effects by inducing AMPK/mTOR-mediated autophagy and DNA damage. Chemosphere. 2020: 127448. 25. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS nano. 2018 Dec 26;12(12):12380-12392. 26. Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE ‐induced selective autophagy by conjugation with K63 polyubiquitin chain. Cellular Microbiology. 2019, 21(4): e12984 27. Xia Y, Chen J, Yu Y, et al. Compensatory combination of mTOR and TrxR inhibitors to cause oxidative stress and regression of tumors. Theranostics. 2021, 11(9): 4335. 28. Zhang Y, Ding Y, Li M, et al. MicroRNA-34c-5p provokes isoprenaline-induced cardiac hypertrophy by modulating autophagy via targeting ATG4B. Acta Pharmaceutica Sinica B. 2021 29. hang C, Liu Z, Zhang Y, et al. Z“Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death & Disease. 2020, 11(3): 1-15. 30. Gao X, Jiang P, Zhang Q, et al. Peglated-H1/pHGFK1 nanoparticles enhance anti-tumor effects of sorafenib by inhibition of drug-induced autophagy and stemness in renal cell carcinoma. Journal of Experimental & Clinical Cancer Researc. 2019, 38(1): 1-15 31. Liu T, Zong S, Luo P, et al. Enhancing autophagy by down-regulating GSK-3β alleviates cisplatin-induced ototoxicity in vivo and in vitro. Toxicology Letters. 2019 32. Zhang H, Cui Z, Cheng D, et al. RNF186 regulates EFNB1 (ephrin B1)-EPHB2-induced autophagy in the colonic epithelial cells for the maintenance of intestinal homeostasis. Autophagy. 2021 Oct;17(10):3030-3047 33. Xue J, Gruber F, Tschachler E, et al. Crosstalk between oxidative stress, autophagy and apoptosis in Hemoporfin Photodynamic Therapy treated human umbilical vein endothelial cells. Photodiagnosis and Photodynamic Therapy. 2020: 102137. 34. Zhao Deng,Jiangjin Ni,Xiaoyu Wu,Hongkui Wei, et al. GPA peptide inhibits NLRP3 inflammasome activation to ameliorate colitis through AMPK pathway. Aging-us. 2020 35. Wang H, Ye J, Peng Y, et al.CKLF induces microglial activation via triggering defective mitophagy and mitochondrial dysfunction.Autophagy.2023 (just-accepted). 36. Wu X, Yi X, Zhao B, et al.The volume regulated anion channel VRAC regulates NLRP3 inflammasome by modulating itaconate efflux and mitochondria function.Pharmacological Research.2023: 107016. 37. Su C, Cheng C, Rong Z, et al.Repurposing fluphenazine as an autophagy modulator for treating liver cancer.Heliyon.2023 38. Zhang M, Tan H, Gong Y, et al.TRIM26 restricts Epstein–Barr virus infection in nasopharyngeal epithelial cells through K48‐linked ubiquitination of HSP‐90β.The FASEB Journal.2024, 38(1): e23345. 39. Han Y, Wang C, Lu K, et al.Bovine parainfluenza type 3 virus induces incomplete autophagy to promote viral replication by activated beclin1 in vitro.Veterinary Microbiology.2024: 109972. 40. Tang Y, Wei J, Wang X F, et al.Activation of autophagy by Citri Reticulatae Semen extract ameliorates amyloid-beta-induced cell death and cognition deficits in Alzheimer’s disease.Neural Regeneration Research.2024 41. Chen J, Liu Y, You Y, et al.Biotin-decorated celastrol-loaded ZIF-8 nanoparticles induce ferroptosis for colorectal cancer therapy.Materials & Design.2024: 112814. 42. Liu T, Shi J, Wu D, et al.THSG alleviates cerebral ischemia/reperfusion injury via the GluN2B–CaMKII–ERK1/2 pathway.Phytomedicine.2024: 155595.
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Inhibitor Library HIF-1 Signaling Pathway Compound Library Angiogenesis related Compound Library Cancer Cell Differentiation Compound Library Human Endogenous Metabolite Compound Library Plus Anti-Metabolism Disease Compound Library Antioxidant Compound Library Anti-Lung Cancer Compound Library Human Metabolite Library Mitochondria-Targeted Compound Library

関連製品

同一標的の関連化合物
Matrine Naringin Kaempferol Brefeldin A ABT-737 Etoposide Clioquinol GSK2578215A

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

3-Methyladenine 5142-23-4 Autophagy Metabolism PI3K/Akt/mTOR signaling Mitophagy Endogenous Metabolite PI3K 3 Methyladenine inhibit 3-MA Mitochondrial Autophagy 3Methyladenine NSC66389 NSC 66389 NSC-66389 Phosphoinositide 3-kinase Inhibitor inhibitor