ホーム 計算ツール
代理店ログイン

Sorafenib

カタログ番号 T0093L   CAS 284461-73-0
別名: Bay 43-9006

Sorafenib (Bay 43-9006) is a multikinase inhibitor that inhibits Raf-1, B-Raf, VEGFR2, VEGFR3, VEGFR4, PDGFRβ, FLT3, c-Kit, and others (IC50=6/22/90/15/20/20/57/58 nM) with oral activity. Sorafenib has antitumor activity and can induce autophagy and apoptosis as well as agonistic iron death.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Sorafenib, CAS 284461-73-0
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
50 mg 在庫あり ¥ 8,000
100 mg 在庫あり ¥ 11,000
500 mg 在庫あり ¥ 14,500
1 g 在庫あり ¥ 21,000
1 mL * 10 mM (in DMSO) 在庫あり ¥ 7,000
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Sorafenib (Bay 43-9006) is a multikinase inhibitor that inhibits Raf-1, B-Raf, VEGFR2, VEGFR3, VEGFR4, PDGFRβ, FLT3, c-Kit, and others (IC50=6/22/90/15/20/20/57/58 nM) with oral activity. Sorafenib has antitumor activity and can induce autophagy and apoptosis as well as agonistic iron death.
ターゲット&IC50 c-Kit:68 nM (cell free), PDGFRβ:57 nM (cell free), B-Raf V599E:38 nM (cell free), Raf-1:6 nM (cell free0, B-Raf:22 nM (cell free), VEGFR3:20 nM (cell free)
In vitro METHODS: Human hepatocellular carcinoma cells HepG2 and HuH-7 were treated with Sorafenib (2-20 µmol/L) for 48 h, and cell growth inhibition was detected using MTT method.
RESULTS: Sorafenib dose-dependently inhibited the growth of HepG2 and HuH-7 cells with IC50 of approximately 6 µmol/L.[1]
METHODS: Human acute promyelocytic leukemia cells NB4 were treated with Sorafenib (1.5-12 µM) for 24-48 h. Apoptosis was detected using Flow Cytometry.
RESULTS: Sorafenib dose-dependent apoptosis of NB4 cells, with a significant increase in the proportion of both early and late apoptotic cells. [2]
METHODS: Rat hepatobiliary cholangiocarcinoma cells LCC-2 were treated with Sorafenib (2.5-5 μM) for 12 h. Mitochondrial membrane potential was measured using JC-1 dye.
RESULTS: Sorafenib depolarized the isolated mitochondria. [3]
In vivo METHODS: To assay antitumor activity in vivo, Sorafenib (7.5-60 mg/kg) was orally administered once daily for two to four days to NCr-nu/nu mice harboring human tumors MDA-MB-231, Colo-205, HT-29, DLD-1, NCI-H460, and A549.
RESULTS: Sorafenib showed broad oral antitumor efficacy in various human tumor xenograft models. [4]
METHODS: To assay antitumor activity in vivo, Sorafenib (30 mg/kg/five times per week) and everolimus (10 mg/kg/three times per week) were administered by gavage to PTEN-mutant mice bearing CRPC, a tumor of desmoplasia-resistant prostate cancer, once a day for four weeks.
RESULTS: Sorafenib administration increased the expression of androgen receptor p-GSK3β and p-ERK1/2 in CRPC, and the combination of Sorafenib and everolimus overcame treatment escape in CRPC tumors treated with Sorafenib alone. [5]
キナーゼ試験 Recombinant baculoviruses expressing Raf-1 (residues 305–648) and B-Raf (residues 409–765) are purified as fusion proteins. Full-length human MEK-1 is generated by PCR and purified as a fusion protein from Escherichia coli lysates. Sorafenib tosylate is added to a mixture of Raf-1 (80 ng), or B-Raf (80 ng) with MEK-1 (1 μg) in assay buffer [20 mM Tris (pH 8.2), 100 mM NaCl, 5 mM MgCl2, and 0.15% β-mercaptoethanol] at a final concentration of 1% DMSO. The Raf kinase assay (final volume of 50 μL) is initiated by adding 25 μL of 10 μM γ[33P]ATP (400 Ci/mol) and incubated at 32 °C for 25 minutes. Phosphorylated MEK-1 is harvested by filtration onto a phosphocellulose mat, and 1% phosphoric acid is used to wash away unbound radioactivity. After drying by microwave heating, a β-plate counter is used to quantify filter-bound radioactivity. Human VEGFR2 (KDR) kinase domain is expressed and purified from Sf9 lysates. Time-resolved fluorescence energy transfer assays for VEGFR2 are performed in 96-well opaque plates in the time-resolved fluorescence energy transfer format. Final reaction conditions are as follows: 1 to 10 μM ATP, 25 nM poly GT-biotin, 2 nM Europium-labeled phospho (p)-Tyr antibody (PY20), 10 nM APC, 1 to 7 nM cytoplasmic kinase domain in final concentrations of 1% DMSO, 50 mM HEPES (pH 7.5), 10 mM MgCl2, 0.1 mM EDTA, 0.015% Brij-35, 0.1 mg/mL BSA, and 0.1% β-mercaptoethanol. Reaction volumes are 100 μL and are initiated by the addition of enzyme. Plates are read at both 615 and 665 nM on a Perkin-Elmer VictorV Multilabel counter at ~1.5 to 2.0 hours after reaction initiation. Signal is calculated as a ratio: (665 nm/615 nM) × 10,000 for each well. For IC50 generation, Sorafenib tosylate is added before the enzyme initiation. A 50-fold stock plate is made with Sorafenib tosylate serially diluted 1:3 in a 50% DMSO/50% distilled water solution. Final Sorafenib tosylate concentrations range from 10 μM to 4.56 nM in 1% DMSO.
細胞研究 Tumor cell lines were plated at 2 × 105 cells per well in 12-well tissue culture plates in DMEM growth media (10% heat-inactivated FCS) overnight. Cells were washed once with serum-free media and incubated in DMEM supplemented with 0.1% fatty acid-free BSA containing various concentrations of BAY 43-9006 in 0.1% DMSO for 120 minutes to measure changes in basal pMEK 1/2, pERK 1/2, or pPKB. Cells were washed with cold PBS (PBS containing 0.1 mmol/L vanadate) and lysed in a 1% (v/v) Triton X-100 solution containing protease inhibitors. Lysates were clarified by centrifugation, subjected to SDS-PAGE, transferred to nitrocellulose membranes, blocked in TBS-BSA, and probed with anti-pMEK 1/2 (Ser217/Ser221; 1:1000), anti-MEK 1/2, anti-pERK 1/2 (Thr202/Tyr204; 1:1000), anti-ERK 1/2, anti-pPKB (Ser473; 1:1000), or anti-PKB primary antibodies. Blots were developed with horseradish peroxidase (HRP)-conjugated secondary antibodies and developed with Amersham ECL reagent on Amersham Hyperfilm [1].
動物実験 Female NCr-nu/nu mice (Taconic Farms, Germantown, NY) were used for all studies. Three to five million cells were injected s.c. into the right flank of each mouse. DLD-1 tumors were established and maintained as a serial in vivo passage of s.c. fragments (3 × 3 mm) implanted in the flank using a 12-gauge trocar. A new generation of the passage was initiated every three weeks, and studies were conducted between generations 3 and 12 of this line. Treatment was initiated when tumors in all mice in each experiment ranged in size from 75 to 144 mg for antitumor efficacy studies and from 100 to 250 mg for studies of microvessel density and ERK phosphorylation. All treatment was administered orally once daily for the duration indicated in each experiment.
別名 Bay 43-9006
分子量 464.82
分子式 C21H16ClF3N4O3
CAS No. 284461-73-0

保存条件

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

H2O: < 1 mg/mL (insoluble or slightly soluble)

DMF: 3.33mg/ml(7.17mM)

DMSO: 55 mg/mL (118.33 mM)

Ethanol: < 1 mg/mL (insoluble or slightly soluble)

参考文献

1. Wei JC, et al. Sorafenib inhibits proliferation and invasion of human hepatocellular carcinoma cells via up-regulation of p53 and suppressing FoxMActa Pharmacol Sin. 2015 Feb;36(2):241-51. 2. Zhang Y, et al. Sorafenib inhibited cell growth through the MEK/ERK signaling pathway in acute promyelocytic leukemia cells. Oncol Lett. 2018 Apr;15(4):5620-5626. 3. Tesori V, et al. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing. Sci Rep. 2015 Mar 17;5:9149. 4. Wilhelm SM, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004 Oct 1;64(19):7099-109. 5. Yamamoto Y, et al. Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer. J Transl Med. 2015 May 8;13:150. 6. Li Z, Dai H, Huang X, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma[J]. Acta Pharmacologica Sinica. 2020: 1-10. 7. Uhrig S, Ellermann J, Walther T, et al. Accurate and efficient detection of gene fusions from RNA sequencing data[J]. Genome Research. 2021 8. Fang, Tian, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nature communications. 2018 Jan 15;9(1):191.

引用文献

1. Wang C, Huang M, Lin Y, et al.ENO2-derived phosphoenolpyruvate functions as an endogenous inhibitor of HDAC1 and confers resistance to antiangiogenic therapy.Nature Metabolism.2023: 1-22. 2. Sun L, Wan A H, Yan S, et al.A multidimensional platform of patient-derived tumors identifies drug susceptibilities for clinical lenvatinib resistance.Acta Pharmaceutica Sinica B.2023 3. Wang X, Ji Y, Qi J, et al.Mitochondrial carrier 1 (MTCH1) governs ferroptosis by triggering the FoxO1-GPX4 axis-mediated retrograde signaling in cervical cancer cells.Cell Death & Disease.2023, 14(8): 1-13. 4. Shan X, Jiang R, Gou D, et al.Identification of a diketopiperazine‐based O‐GlcNAc transferase inhibitor sensitizing hepatocellular carcinoma to CDK9 inhibition.The FEBS Journal.2023 5. Liu M, Shi C, Song Q, et al.Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma.Hepatology Communications.2023, 7(10). 6. Ni H, Ruan G, Sun C, et al. Tanshinone IIA inhibits gastric cancer cell stemness through inducing ferroptosis. Environmental Toxicology. 2021 7. Wang H, Cui Y, Gong H, et al. Suppression of AGTR1 Induces Cellular Senescence in Hepatocellular Carcinoma Through Inactivating ERK Signaling. Frontiers in Bioengineering and Biotechnology. 2022, 10. 8. Li Z, Dai H, Huang X, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacologica Sinica. 2020: 1-10 9. Zhang H, Xu H, Tang Q, et al. The selective serotonin reuptake inhibitors enhance the cytotoxicity of sorafenib in hepatocellular carcinoma cells. Anti-Cancer Drugs. 2021, 32(8): 793-801. 10. Feng J, Lu P, Zhu G, et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacologica Sinica. 2021 Jan;42(1):160-170. doi: 10.1038/s41401-020-0439-x. Epub 2020 Jun 15.
11. Liu Y, Ouyang L, Mao C, et al. PCDHB14 promotes ferroptosis and is a novel tumor suppressor in hepatocellular carcinoma. Oncogene. 2022: 1-14 12. Xu J, Su Z, Cheng X, et al. High PPT1 expression predicts poor clinical outcome and PPT1 inhibitor DC661 enhances sorafenib sensitivity in hepatocellular carcinoma. Cancer Cell International. 2022, 22(1): 1-20. 13. Ma A, Biersack B, Goehringer N, et al. Novel Thienyl-Based Tyrosine Kinase Inhibitors for the Treatment of Hepatocellular Carcinoma. Journal of Personalized Medicine. 2022, 12(5): 738 14. Zhou J, Feng J, Wu Y, et al. Simultaneous treatment with sorafenib and glucose restriction inhibits hepatocellular carcinoma in vitro and in vivo by impairing SIAH1-mediated mitophagy. Experimental & Molecular Medicine. 2022: 1-15. 15. Bai C, Sun Y, Pan X, et al. Antitumor Effects of Trimethylellagic Acid Isolated From Sanguisorba officinalis L. on Colorectal Cancer via Angiogenesis Inhibition and Apoptosis Induction. Frontiers in Pharmacology. 2020, 10: 1646 16. Uhrig S, Ellermann J, Walther T, et al. Accurate and efficient detection of gene fusions from RNA sequencing data. Genome Research. 2021, 31(3): 448-460 17. Xu S, Liu Y, Ding Y, et al. The zinc finger transcription factor, KLF2, protects against COVID-19 associated endothelial dysfunction. Signal Transduction and Targeted Therapy. 2021, 6(1): 1-9. 18. Feng J, Lu P, Zhu G, et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacologica Sinica. 2021 Jan;42(1):160-170. doi: 10.1038/s41401-020-0439-x. Epub 2020 Jun 15. 19. Fang T, Lv H, Lv G, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nature Communications. 2018, 9(1): 1-13 20. Liu Q, Wang J, Sun H, et al.Targeting RORγ inhibits the growth and metastasis of hepatocellular carcinoma.Molecular Therapy.2024
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Drug Repurposing Compound Library Tyrosine Kinase Inhibitor Library Anti-Cancer Drug Library Anti-Cancer Active Compound Library Anti-Cancer Approved Drug Library Kinase Inhibitor Library EMA Approved Drug Library FDA-Approved Kinase Inhibitor Library Anti-Cancer Clinical Compound Library Membrane Protein-targeted Compound Library

関連製品

同一標的の関連化合物
Bilobalide CPTH2 Penicillic acid D4476 PFK-158 Diphenyl disulfide Apitolisib VU 0364739 hydrochloride

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Sorafenib 284461-73-0 Angiogenesis Apoptosis Autophagy MAPK Tyrosine Kinase/Adaptors c-Kit PDGFR FLT Ferroptosis VEGFR Raf inhibit Inhibitor CD135 Vascular endothelial growth factor receptor Fms like tyrosine kinase 3 Raf kinases Bay 43-9006 Cluster of differentiation antigen 135 FLT3 inhibitor