ホーム 計算ツール
代理店ログイン

Tanespimycin

カタログ番号 T6290   CAS 75747-14-7
別名: 17-AAG, CP 127374, NSC 330507, KOS 953

Tanespimycin (KOS 953) (17-AAG) is an inhibitor of Hsp90 that selectively inhibits BT474 tumor cell Hsp90 (IC50: 5 nM).

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Tanespimycin, CAS 75747-14-7
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
5 mg 在庫あり ¥ 9,000
10 mg 在庫あり ¥ 13,500
25 mg 在庫あり ¥ 22,500
1 mL * 10 mM (in DMSO) 在庫あり ¥ 12,500
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Tanespimycin (KOS 953) (17-AAG) is an inhibitor of Hsp90 that selectively inhibits BT474 tumor cell Hsp90 (IC50: 5 nM).
ターゲット&IC50 HSP90:5 nM (cell free)
In vitro Hsp90 derived from tumour cells has a 100-fold higher binding affinity for 17-AAG than does Hsp90 from normal cells. In vitro reconstitution of chaperone complexes with Hsp90 resulted in increased binding affinity to 17-AAG, and increased ATPase activity [1]. 17-AAG caused the degradation of HER2, Akt, and both mutant and wild-type AR and the retinoblastoma-dependent G1 growth arrest of prostate cancer cells [2]. Combined 17-AAG and Trastuzumab treatment of ErbB2-overexpressing breast cancer cell lines leads to enhanced ubiquitinylation, downregulation from the cell surface and lysosomal degradation of ErbB2 [3].
In vivo At non-toxic doses, 17-AAG caused a dose-dependent decline in AR, HER2, and Akt expression in prostate cancer xenografts. This decline was rapid, with a 97% loss of HER2 and an 80% loss of AR expression at 4 h [2]. In contrast, spleens from mice which had received 17-AAG (5 to 40 mg/kg) were dramatically smaller, with less infiltrating lymphoma cells in the spleen, and a lower metastatic spread into other organs, as compared to the vehicle-treated control. In addition, 17-AAG treated mice survived significantly longer compared to mice which had received vehicle alone [4].
キナーゼ試験 Purified native Hsp90 protein or cell lysates in lysis buffer (20 mM HEPES, pH 7.3, 1 mM EDTA, 5 mM MgCl2, 100 mM KCl) were incubated with or without 17-AAG for 30 min at 4 °C, and then incubated with biotin-GM linked to streptavidin magnetic beads for 1 h at 4 °C. Tubes were placed on a magnetic rack, and the unbound supernatant removed. The magnetic beads were washed three times in lysis buffer and heated for 5 min at 95 °C in SDS–PAGE sample buffer. Samples were analyzed on SDS protein gels, and western blots done using indicated antibodies. Bands in the western blots were quantified, and the percentage inhibition of binding of Hsp90 to the biotin-GM was calculated. The IC50 reported is the concentration of 17-AAG needed to cause half-maximal inhibition of binding. For in vitro reconstitution, 5 μM of purified Hsp90 was combined with 1 μM each of Hsp70, Hsp40, p23, and Hop purified proteins [1].
細胞研究 Cells were seeded in 96-well plates at 2,000 cells per well in a final culture volume of 100 μl for 24 h before the addition of increasing concentrations of 17-AAG that was incubated for 5 days. Viable cell number was determined using the Celltiter 96 AQueous Nonradioactive Cell Proliferation Assay. The value of the background absorbance at 490 nm (A490) of wells not containing cells was subtracted. Percentage of viable cells ? (A490 of 17-AAG treated sample/A490 untreated cells) × 100. The IC50 was defined as the concentration that gave rise to 50% viable cell number [1].
動物実験 B10.BR mice were inoculated with 5×10^5 lymphoma cells through intraperitoneal injection. Seven days following tumor implantation, the mice were I.P. injected with 17-AAG or vehicle (10% DMSO + 40% Cremophor EL: Ethanol (3:1) (v/v) + 50 % PBS) every other day for three weeks. At the cessation of treatment, mice were monitored up to 80 days post tumor cell injection. To determine the effects of 17-AAG on lymphoma initiation in vivo, secondary B10.BR recipient mice were implanted by intraperitoneal injection of 1×10^5 lymphoma cells from the spleens of first-round mice that had been treated with 17-AAG or vehicle. These mice were followed up to 160 days post tumor cell injection to monitor differences in tumor initiation between the mice [4].
別名 17-AAG, CP 127374, NSC 330507, KOS 953
分子量 585.69
分子式 C31H43N3O8
CAS No. 75747-14-7

保存条件

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

DMSO: 58.6 mg/mL (100 mM)

参考文献

1. Kamal A, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 2003 Sep 25;425(6956):407-10. 2. Solit DB, et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts.Clin Cancer Res, 2002, 8(5), 986-993. 3. Raja SM, et al. A combination of Trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysosomal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells. Cancer Biol Ther. 2008 Oct;7(10):1630-40. 4. Newman B, et al. HSP90 Inhibitor 17-AAG Selectively Eradicates Lymphoma Stem Cells.Cancer Res. 2012 Sep 1;72(17):4551-61. Epub 2012 Jun 29. 5. Peng Y C, Wang S, Zhang Y, et al. Hsp90β inhibitors prevent GLT-1 degradation but have no beneficial efficacy on absence epilepsy[J]. Journal of Asian natural products research. 2018 Nov 17:1-11. 6. Zuo Y, Xu H, Chen Z, et al. 17‑AAG synergizes with Belinostat to exhibit a negative effect on the proliferation and invasion of MDA‑MB‑231 breast cancer cells[J]. Oncology Reports. 2020, 43(6): 1928-1944. 7. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis[J]. Proceedings of the National Academy of Sciences. 2019 Feb 19;116(8):2996-3005.

引用文献

1. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proceedings of the National Academy of Sciences. 2019 Feb 19;116(8):2996-3005 2. Chen H, He A, Li H, et al. TSSK4 upregulation in alveolar epithelial type-II cells facilitates pulmonary fibrosis through HSP90-AKT signaling restriction and AT-II apoptosis. Cell Death & Disease. 2021, 12(10): 1-1 3. Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022: 154133 4. Zuo Y, Xu H, Chen Z, et al. 17‑AAG synergizes with Belinostat to exhibit a negative effect on the proliferation and invasion of MDA‑MB‑231 breast cancer cells. Oncology Reports. 2020, 43(6): 1928-1944. 5. Peng Y C, Wang S, Zhang Y, et al. Hsp90β inhibitors prevent GLT-1 degradation but have no beneficial efficacy on absence epilepsy. Journal of Asian Natural Products Research. 2018 Nov 17:1-11 6. Qiu C, Shen X, Lu H, et al.Combination therapy with HSP90 inhibitors and piperlongumine promotes ROS-mediated ER stress in colon cancer cells.Cell Death Discovery.2023, 9(1): 375. 7. Wang C, Wang T, Hu R, et al.9-Butyl-Harmol Exerts Antiviral Activity against Newcastle Disease Virus through Targeting GSK-3β and HSP90β.Journal of Virology.2023: e01984-22. 8. Zhang M, Tan H, Gong Y, et al.TRIM26 restricts Epstein–Barr virus infection in nasopharyngeal epithelial cells through K48‐linked ubiquitination of HSP‐90β.The FASEB Journal.2024, 38(1): e23345. 9. Huang Z, Li S, Zhong L, et al.Effect of resveratrol on herpesvirus encephalitis: evidences for its mechanisms of action.Phytomedicine.2024: 155476.

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Drug Repurposing Compound Library Anti-Cancer Drug Library Kinase Inhibitor Library Anti-Cancer Active Compound Library Anti-Cancer Clinical Compound Library Inhibitor Library Microbial Natural Product Library Highly Selective Inhibitor Library Natural Product Library for HTS Anti-Aging Compound Library

関連製品

同一標的の関連化合物
IACS-010759 Alpha-Hederin Capmatinib Enzastaurin Pladienolide B Sarsasapogenin Adarotene NVP-TNKS656

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Tanespimycin 75747-14-7 Apoptosis Autophagy Cytoskeletal Signaling Metabolism Microbiology/Virology Mitophagy HSP Antibacterial Antibiotic tumor stk38 Inhibitor KOS953 cancer prostate Heat shock proteins NSC-330507 Mitochondrial Autophagy 17-AAG CP127374 CP 127374 NSC 330507 inhibit CP-127374 KOS 953 HER2 KOS-953 A549 NSC330507 Bacterial inhibitor