ホーム 計算ツール
代理店ログイン

Chloroquine phosphate

カタログ番号 T0194   CAS 50-63-5
別名: Chloroquine diphosphate, Aralen phosphate, Chingamin phosphate

Chloroquine phosphate (Aralen phosphate) is an aminoquinoline antimalarial and also is widely used as an autophagy inhibitor. Chloroquine also is an inhibitor of toll-like receptors (TLRs).

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Chloroquine phosphate, CAS 50-63-5
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
100 mg 在庫あり ¥ 10,000
200 mg 在庫あり ¥ 11,500
500 mg 在庫あり ¥ 15,500
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Chloroquine phosphate (Aralen phosphate) is an aminoquinoline antimalarial and also is widely used as an autophagy inhibitor. Chloroquine also is an inhibitor of toll-like receptors (TLRs).
ターゲット&IC50 Cytotoxicity against human K562 cells:31.83 nM, Cytotoxicity against hμMan KB cells by microplate method:0.6 μM
In vitro Chloroquine (20 μM) inhibits IL-12p70 release and reduces Th1-priming capacity of activated human monocyte-derived Langerhans-like cells (MoLC). Chloroquine (20 μM) enhances IL-1–induced IL-23 secretion in MoLC and subsequently increases IL-17A release by primed CD4+ T cells [1]. Chloroquine (25 μM) suppresses MMP-9 mRNA expression in normoxia and hypoxia in parental MDA-MB-231 cells. Chloroquine has cell-, dose- and hypoxia-dependent effects on MMP-2, MMP-9 and MMP-13 mRNA expression [2]. TLR7 and TLR9 inhibition using chloroquine significantly reduce HuH7 cell proliferation in vitro [3].
In vivo Chloroquine (80 mg/kg, i.p.) fails to inhibit the proliferation of triple-negative MDA-MB-231 cells regardless of their high or low TLR9 expression levels in the orthotopic mouse model [2]. However, chloroquine's suppression of TLR7 and TLR9 significantly reduces tumor growth in the mouse xenograft model, and it likewise markedly impedes HCC development in the DEN/NMOR rat model [3].
細胞研究 The cells are cultured in 6-well plates with normal culture medium in the presence of vehicle or 25 or 50 μM chloroquine, until near confluency, after which they are rinsed with sterile phosphate-buffered saline (PBS) and cultured further for the indicated times in serum-free culture medium. At the desired time-points, the culture medium is discarded and the cells are quickly harvested in lysis buffer and clarified by centrifugation. Subsequent to boiling the supernatants in reducing sodium dodecyl sulfate (SDS) sample buffer, equal amounts of protein (100 μg) are loaded per lane and the samples are electrophoresed into 10 or 4-20% gradient polyacrylamide SDS gels, then transferred to a nitrocellulose membrane. To detect TLR9, the blots were incubated overnight at 4°C with anti-TLR9 antibodies, diluted 1:500 in Tris-buffered saline with 0.1% (v/v) Tween-20 (TBST). Equal loading is confirmed with polyclonal rabbit anti-actin. Secondary detection is performed with horseradish peroxidase-linked secondary antibodies. The protein bands are visualized by chemiluminescence using an ECL kit [2].
動物実験 Control and TLR9 siRNA MDA-MB-231 cells (5×105 cells in 100 μL) are inoculated into the mammary fat pads of four-week-old, immune-deficient mice (athymic nude/nu Foxn1). Treatments are started seven days after tumor cell inoculation. The mice are treated daily either with intraperitoneal (i.p.) chloroquine (80 mg/kg) or vehicle (PBS). The animals are monitored daily for clinical signs. Tumor measurements are performed twice a week and tumor volume is calculated according to the formula V=(π/6) (d1×d2)3/2, where d1 and d2 are perpendicular tumor diameters. The tumors are allowed to grow for 22 days, at which point the mice are sacrificed and the tumors are dissected for a final measurement. Throughout the experiments, the animals are maintained under controlled pathogen-free environmental conditions (20-21°C, 30-60% relative humidity and a 12-h lighting cycle). The mice are fed with small-animal food pellets and supplied with sterile water ad libitum [2].
別名 Chloroquine diphosphate, Aralen phosphate, Chingamin phosphate
分子量 515.87
分子式 C18H26CLN3·2(H3PO4)
CAS No. 50-63-5

保存条件

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

DMSO: Insoluble

H2O: 10 mM

参考文献

1. Said A, et al. Chloroquine promotes IL-17 production by CD4+ T cells via p38-dependent IL-23 release by monocyte-derived Langerhans-like cells. J Immunol. 2014 Dec 15;193(12):6135-43. 2. Tuomela J, et al. Chloroquine has tumor-inhibitory and tumor-promoting effects in triple-negative breast cancer. Oncol Lett. 2013 Dec;6(6):1665-1672. 3. Mohamed FE, et al. Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int. 2014 Jul 2. doi: 10.1111/liv.12626. 4. Su Q, Wang J, Liu F, et al. Blocking Parkin/PINK1-mediated mitophagy sensitizes hepatocellular carcinoma cells to sanguinarine-induced mitochondrial apoptosis[J]. Toxicology in Vitro. 2020: 104840. 6. Hanyu X, Lanyue L, Miao D, et al. Effect of Ganoderma applanatum polysaccharides on MAPK/ERK pathway affecting autophagy in breast cancer MCF-7 cells[J]. International Journal of Biological Macromolecules. 2020, 146: 353-362 7. Zhou Y, Wang Y, Wu S, et al. Sulforaphane-cysteine inhibited migration and invasion via enhancing mitophagosome fusion to lysosome in human glioblastoma cells[J]. Cell Death & Disease. 2020, 11(9): 1-16. 8. Zhou B, Yan J, Guo L, et al. Hepatoma cell-intrinsic TLR9 activation induces immune escape through PD-L1 upregulation in hepatocellular carcinoma[J]. Theranostics. 2020, 10(14): 6530.

引用文献

1. Liu X, Xi H, Han S, et al.Zearalenone induces oxidative stress and autophagy in goat Sertoli cells.Ecotoxicology and Environmental Safety.2023, 252: 114571. 2. Guo S, Xu Z, Feng Q, et al.Molecular mechanism by which RRM2-inhibitor (cholagogue osalmid) plus bafilomycin A1 cause autophagic cell death in multiple myeloma.Archives of Biochemistry and Biophysics.2023: 109771. 3. Zhou B, Yan J, Guo L, et al. Hepatoma cell-intrinsic TLR9 activation induces immune escape through PD-L1 upregulation in hepatocellular carcinoma. Theranostics. 2020, 10(14): 6530. 4. Zhou Y, Wang Y, Wu S, et al. Sulforaphane-cysteine inhibited migration and invasion via enhancing mitophagosome fusion to lysosome in human glioblastoma cells. Cell Death & Disease. 2020, 11(9): 1-16. 5. Hanyu X, Lanyue L, Miao D, et al. Effect of Ganoderma applanatum polysaccharides on MAPK/ERK pathway affecting autophagy in breast cancer MCF-7 cells. International Journal of Biological Macromolecules. 2020, 146: 353-362 6. Wang Y, Ji L, Peng Z, et al. Silencing DAPK3 blocks the autophagosome-lysosome fusion by mediating SNAP29 in trophoblast cells under high glucose treatment. Molecular and Cellular Endocrinology. 2020, 502: 110674 7. Su Q, Wang J, Liu F, et al. Blocking Parkin/PINK1-mediated mitophagy sensitizes hepatocellular carcinoma cells to sanguinarine-induced mitochondrial apoptosis. Toxicology in Vitro. 2020: 104840 8. Xi H, Hu Z, Han S, et al. FSH-inhibited autophagy protects against oxidative stress in goat Sertoli cells through p62-Nrf2 pathway. Theriogenology. 2022 9. Su Q, Wu Q, Chen K, et al. Induction of Estrogen Receptor β-mediated Autophagy Sensitizes Breast Cancer Cells to TAD1822-7, a Novel Biphenyl Urea Taspine Derivative. Molecular Biology Reports. 2021 10. Zhou B, Yan J, Guo L, et al. Hepatoma cell-intrinsic TLR9 activation induces immune escape through PD-L1 upregulation in hepatocellular carcinoma. Theranostics. 2020, 10(14): 6530.
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Inhibitor Library Anti-Cancer Drug Library Membrane Protein-targeted Compound Library Anti-Cancer Approved Drug Library Antiparasitic Natural Product Library Drug Repurposing Compound Library Anti-Parasitic Compound Library Natural Product Library Toxic Compound Library Target-Focused Phenotypic Screening Library

関連製品

同一標的の関連化合物
MAT-POS-e194df51-1 GS-441524 E07 aptamer Z795161988 SARS-CoV-2 3CLpro-IN-16 Merafloxacin SARS-CoV-2-IN-54 Andrographolide

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Chloroquine phosphate 50-63-5 Autophagy Immunology/Inflammation Microbiology/Virology Proteases/Proteasome Antibiotic Parasite TLR HIV Protease SARS-CoV inhibit Chingamin Phosphate COVID-19 Chloroquine Inhibitor rheumatoid immune-modulating Toll-like Receptor (TLR) HIV Chloroquine diphosphate Aralen phosphate SARS coronavirus Chloroquine Phosphate infection Human immunodeficiency virus arthritis Chloroquine Diphosphate malaria inflammatory Chingamin phosphate Aralen Phosphate inhibitor