ホーム 計算ツール
代理店ログイン

Crizotinib

カタログ番号 T1661   CAS 877399-52-5
別名: PF-02341066

Crizotinib (PF-02341066) is an ATP-competitive small-molecule tyrosine kinases inhibitor of c-MET (IC50: 8 nM) and ALK (IC50: 20 nM) receptor.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Crizotinib, CAS 877399-52-5
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
10 mg 在庫あり ¥ 10,500
25 mg 在庫あり ¥ 13,000
50 mg 在庫あり ¥ 14,500
100 mg 在庫あり ¥ 19,500
200 mg 在庫あり ¥ 22,500
500 mg 在庫あり ¥ 36,500
1 mL * 10 mM (in DMSO) 在庫あり ¥ 11,000
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Crizotinib (PF-02341066) is an ATP-competitive small-molecule tyrosine kinases inhibitor of c-MET (IC50: 8 nM) and ALK (IC50: 20 nM) receptor.
ターゲット&IC50 ALK:24 nM (cell free), c-Met:11 nM (A498 cells)
In vitro Crizotinib (PF-2341066) potently inhibited c-Met phosphorylation and c-Met-dependent proliferation, migration, or invasion of human tumor cells in vitro (IC50: 5-20 nmol/L). In addition, PF-2341066 potently inhibited HGF-stimulated endothelial cell survival or invasion and serum-stimulated tubulogenesis in vitro [1]. Both of two cell lines with MET amplification, EBC-1, and H1993, were sensitive to crizotinib (IC50: 10 nM). In contrast, crizotinib did not substantially inhibit the proliferation of lung cancer cells with a MET mutation (H2122, H1437, and H596) [2]. PF-2341066 potently inhibited NPM-ALK phosphorylation in Karpas299 or SU-DHL-1 ALCL cells (IC50: 24 nmol/L). PF-2341066 potently inhibited cell proliferation, which was associated with G(1)-S-phase cell cycle arrest and induction of apoptosis in ALK-positive ALCL cells (IC50: 30 nmol/L) but not ALK-negative lymphoma cells. The induction of apoptosis was confirmed using terminal deoxyribonucleotide transferase-mediated nick-end labeling and Annexin V staining (IC50: 25-50 nmol/L) [3].
In vivo PF-2341066 showed efficacy at well-tolerated doses, including marked cytoreductive antitumor activity, in several tumor models that expressed activated c-Met. The antitumor efficacy of PF-2341066 was dose-dependent and showed a strong correlation to the inhibition of c-Met phosphorylation in vivo. Near-maximal inhibition of c-Met activity for the full dosing interval was necessary to maximize the efficacy of PF-2341066. Additional mechanism-of-action studies showed a dose-dependent inhibition of c-Met-dependent signal transduction, tumor cell proliferation (Ki67), induction of apoptosis (caspase-3), and reduction of microvessel density (CD31) [1]. Treatment of c-MET-amplified GTL-16 xenografts with 50 mg/kg crizotinib caused tumor regression that was associated with a slow reduction in (18)F-FDG uptake and reduced expression of the GLUT-1. Although baseline (18)F-FDG uptake into U87MG tumors was substantially higher than in GTL-16 tumors, (18)F-FDG uptake into U87MG tumors remained unchanged on treatment at 50 mg/kg crizotinib, despite tumor growth inhibition of 93% on day 8 of treatment [4].
キナーゼ試験 c-Met catalytic activity was quantitated using a continuous-coupled spectrophotometric assay in which the time-dependent production of ADP by c-Met was determined by analysis of the rate of consumption of NADH. NADH consumption was measured by a decrease in absorbance at 340 nm by spectrophotometry at designated time points. To determine Ki values, PF-2341066 was introduced into test wells at various concentrations in the presence of assay reagents and incubated for 10 min at 37°C. The assay was initiated by the addition of the c-Met enzyme [1].
細胞研究 Cells were seeded in 96-well plates in media supplemented with 10% fetal bovine serum (FBS) and transferred to serum-free media (with 0.04% BSA) after 24 h. In experiments investigating ligand-dependent RTK phosphorylation, corresponding growth factors were added for up to 20 min. After incubation of cells with PF-2341066 for 1 h and/or appropriate ligands for the designated times, cells were washed once with HBSS supplemented with 1 mmol/L Na3VO4, and protein lysates were generated from cells. Subsequently, phosphorylation of selected protein kinases was assessed by a sandwich ELISA method using specific capture antibodies used to coat 96-well plates and a detection antibody specific for phosphorylated tyrosine residues. Antibody-coated plates were (a) incubated in the presence of protein lysates at 4°C overnight; (b) washed seven times in 1% Tween 20 in PBS; (c) incubated in a horseradish peroxidase-conjugated anti–total-phosphotyrosine (PY-20) antibody (1:500) for 30 min; (d) washed seven times again; (e) incubated in 3,3′,5,5′-tetramethylbenzidine peroxidase substrate to initiate a colorimetric reaction that was stopped by adding 0.09 N H2SO4; and (f) measured for absorbance in 450 nm using a spectrophotometer [1].
動物実験 Daily treatment with PF-2341066 given in water by oral gavage was initiated when tumors were 100 to 600 mm^3 in volume. Tumor volume was determined by measurement with electronic Vernier calipers, and tumor volume was calculated as the product of its length × width2 × 0.4. Tumor volume was expressed on indicated days as the median tumor volume ± SE indicated for groups of mice. Percent (%) inhibition values were measured on the final day of study for drug-treated compared with vehicle-treated mice and are calculated as 100 × {1?[(TreatedFinal day ? TreatedDay 1)/(ControlFinal day ? ControlDay 1)]}. Tumor regression values were determined by calculating the ratio of median tumor volumes at the time when treatment was initiated to the median tumor volume on the final day of study for a given treatment group. Significant differences between the treated versus the control groups (P ≤ 0.001) were determined using one-way ANOVA [1].
別名 PF-02341066
分子量 450.34
分子式 C21H22Cl2FN5O
CAS No. 877399-52-5

保存条件

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

DMSO: 10 mg/mL (22.21 mM)

2eq.HCl: 45 mg/mL (100 mM)

参考文献

1. Zou HY, et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 2007, 67(9), 4408-4417. 2. Tanizaki J, et al. MET tyrosine kinase inhibitor crizotinib (PF-02341066) shows differential antitumor effects in non-small cell lung cancer according to MET alterations.J Thorac Oncol. 2011 Oct;6(10):1624-31. 3. Christensen JG, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 2007, 6(12 Pt 1), 3314-3322. 4. Cullinane C, et al. Differential (18)F-FDG and 3'-deoxy-3'-(18)F-fluorothymidine PET responses to pharmacologic inhibition of the c-MET receptor in preclinical tumor models. J Nucl Med. 2011 Aug;52(8):1261-7 6. Tucker ER, et al. Immunoassays for the quantification of ALK and phosphorylated ALK support the evaluation of on-target ALK inhibitors in neuroblastoma. Mol Oncol. 2017 Aug;11(8):996-1006. 7. Yang Y, Huang J, Xie N, et al. lincROR influences the stemness and crizotinib resistance in eMl–alK+ non-small-cell lung cancer cells[J]. OncoTargets and therapy. 2018 Jun 22;11:3649-3657. 8. Hu Y, Zhang X, Zhao Z, et al. Keratinocytes apoptosis contributes to crizotinib induced-erythroderma[J]. Toxicology Letters. 2019 9. Tao J, Tu Y, Liu P, et al. Detection of colorectal cancer using a small molecular fluorescent probe targeted against c-Met[J]. Talanta. 2021: 122128.

引用文献

1. Yan H, Wu W, Hu Y, et al.Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis.Nature Communications.2023, 14(1): 2756. 2. Li P, Jia C, Fan Z, et al.Discovery of novel exceptionally potent and orally active c-MET PROTACs for the treatment of tumors with MET alterations.Acta Pharmaceutica Sinica B.2023 3. Zou X, Zeng M, Zheng Y, et al.Comparative Study of Hydroxytyrosol Acetate and Hydroxytyrosol in Activating Phase II Enzymes.Antioxidants.2023, 12(10): 1834. 4. Jiao D, Chen Y, Liu X, et al.Targeting MET endocytosis or degradation to overcome HGF-induced gefitinib resistance in EGFR-sensitive mutant lung adenocarcinoma.Biochemical and Biophysical Research Communications.2023 5. Yu J, Zhang L, Peng J, et al. Dictamnine, a novel c-Met inhibitor, suppresses the proliferation of lung cancer cells by downregulating the PI3K/AKT/mTOR and MAPK signaling pathways. Biochemical pharmacology. 2022, 195: 114864. 6. Arechederra M, Bazai S K, Abdouni A, et al. ADAMTSL5 is an epigenetically activated gene underlying tumorigenesis and drug resistance in hepatocellular carcinoma. Journal of Hepatology. 2021, 74(4): 893-906. 7. Yang Y, Huang J, Xie N, et al. lincROR influences the stemness and crizotinib resistance in eMl–alK+ non-small-cell lung cancer cells. OncoTargets and Therapy. 2018 Jun 22;11:3649-3657 8. Tao J, Tu Y, Liu P, et al. Detection of colorectal cancer using a small molecular fluorescent probe targeted against c-Met. Talanta. 2021: 122128. 9. Hu Y, Zhang X, Zhao Z, et al. Keratinocytes apoptosis contributes to crizotinib induced-erythroderma. Toxicology Letters. 2019 10. Zheng Y D, Zhong T, Wu H, et al. Crizotinib Shows Antibacterial Activity against Gram-Positive Bacteria by Reducing ATP Production and Targeting the CTP Synthase PyrG. Microbiology Spectrum. 2022: e00884-22
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Inhibitor Library Kinase Inhibitor Library Anti-Cancer Clinical Compound Library Anti-Cancer Drug Library EMA Approved Drug Library Tyrosine Kinase Inhibitor Library FDA-Approved Kinase Inhibitor Library Anti-Cancer Active Compound Library Membrane Protein-targeted Compound Library Drug Repurposing Compound Library

関連製品

同一標的の関連化合物
Lorlatinib Salvigenin ROS kinases-IN-1 Entrectinib ROS kinases-IN-2 Methyl 12-methyltridecanoate ROS-generating agent 1 F-1

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Crizotinib 877399-52-5 Angiogenesis Autophagy Immunology/Inflammation Tyrosine Kinase/Adaptors c-Met/HGFR ROS ALK ROS Kinase PF-02341066 Cluster of differentiation 246 PF02341066 Inhibitor Anaplastic lymphoma kinase inhibit CD246 PF 02341066 ALK tyrosine kinase receptor Anaplastic lymphoma kinase (ALK) inhibitor