ホーム 計算ツール
代理店ログイン

Rapamycin

カタログ番号 T1537   CAS 53123-88-9
別名: Sirolimus, AY 22989, NSC-2260804

Rapamycin (AY 22989) is a natural product of macrolides, an mTOR inhibitor with specificity (HEK293 cells: IC50=0.1 nM). Rapamycin has immunosuppressive activity and induces autophagy.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Rapamycin, CAS 53123-88-9
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
10 mg 在庫あり ¥ 7,000
25 mg 在庫あり ¥ 9,500
50 mg 在庫あり ¥ 11,000
100 mg 在庫あり ¥ 14,500
200 mg 在庫あり ¥ 25,000
500 mg 在庫あり ¥ 45,500
1 g 在庫あり ¥ 68,500
1 mL * 10 mM (in DMSO) 在庫あり ¥ 10,000
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Rapamycin (AY 22989) is a natural product of macrolides, an mTOR inhibitor with specificity (HEK293 cells: IC50=0.1 nM). Rapamycin has immunosuppressive activity and induces autophagy.
ターゲット&IC50 mTOR:0.1 nM (HEK293 cells)
In vitro METHODS: Normal human renal epithelial cells HRECs were treated with Rapamycin (0.01-1000 nmol/L) for 6 days, and cell growth inhibition was detected using MTT.
RESULTS: Rapamycin dose-dependently inhibited the growth of HRECs, with a 40% reduction in cell viability at a concentration of 10 nmol/L. [1]
METHODS: Human cervical cancer cells HeLa and human prostate cancer cells PC3 were treated with Rapamycin (100 nM) for 0.5-24 h, and the expression levels of target proteins were detected by Immunoprecipitation.
RESULTS: Rapamycin had little effect on the expression levels of mTOR, raptor and rictor. Rapamycin significantly reduced raptor binding to mTOR at 0.5 h and rictor binding to mTOR at 24 h. Long-term treatment of cells with Rapamycin inhibited mTORC2 assembly. [2]
METHODS: Human vascular endothelial cells were treated with Rapamycin (1-100 ng/mL) for 48 h, and cell migration was examined using the Wound-healing method.
RESULTS: Rapamycin dose-dependently inhibited the migration of human vascular endothelial cells. [3]
In vivo METHODS: To study the effect of Rapamycin on life expectancy, Rapamycin (8 mg/kg in DMSO+5% PEG-400+5% Tween-80) was administered intraperitoneally to 20-21 month old C57BL/6J mice once daily for three months.
RESULTS: Three months of Rapamycin treatment was sufficient to increase the life expectancy of middle-aged mice by 60% and improve their healthy lifespan. [4]
METHODS: To determine the appropriate dose of Rapamycin for the treatment of epilepsy, Rapamycin (0.1-3 mg/kg in 4% ethanol + 5% Tween 80 + 5% PEG 400) was injected intraperitoneally into Sprague-Dawley rats once a day for four weeks.
RESULTS: Only 1.0 mg/kg and 3.0 mg/kg Rapamycin inhibited p-S6. Rats treated with 0.1 and 0.3 mg/kg Rapamycin had no significant adverse effects, whereas rats treated with 1.0 and 3.0 mg/kg Rapamycin showed significant reductions in body, spleen, and thymus weights, and exhibited cognitive impairment and anxiety. The Rapamycin dose could not inhibit mTOR in the treatment of epilepsy without causing any side effects, but 1 mg/kg may be the optimal dose to inhibit mTOR in young rats with relatively few side effects. [5]
キナーゼ試験 HEK293 cells were plated at 2-2.5 × 10^5 cells per well of a 12-well plate and serum-starved for 24 h in DMEM only. Cells were mock-treated or treated with rapamycin (0.05-50 nM), iRap (0.5-500 nM), or AP21967 (0.5-500 nM) for 15 minutes at 37 °C. Serum was added to a final concentration of 20% for 30 minutes at 37 °C. Cells were lysed as described and cell lysates were separated by SDS-PAGE. Resolved proteins were transferred to a PVDF membrane and immunoblotted with a phosphospecific primary antibody against Thr389 of p70 S6 kinase. Data were analyzed using ImageQuant and KaleidaGraph [1].
細胞研究 To determine the effects of rapamycin and rapamycin plus LY294002 or UCN-01 on tumor cells, we determined cell viability after the treatments. We used a trypan blue dye exclusion assay as described previously. Tumor cells in exponential growth were harvested and seeded at 5 × 10^3 cells per well (0.1 mL) in 96-well flat-bottomed plates and incubated overnight at 37°C. The cells were then incubated for 72 hours with or without rapamycin or with rapamycin plus LY294002 or UCN-01. After the cells were collected by trypsinization, they were stained with trypan blue, and the viable cells in each well were counted. The viability of the untreated cells (the control) was considered 100%. Survival fractions were calculated from the mean cell viability of the treated cells [3].
動物実験 Animals were randomized to treatment or vehicle groups so that the mean starting body weights of each group were equal. Drug treatment began on the day of surgery or on the first day of reloading after the 14-day suspension. Rapamycin was delivered once daily by intraperitoneal injection at a dose of 1.5 mg/kg, dissolved in 2% carboxymethylcellulose. CsA was delivered once daily by subcutaneous injection at a dose of 15 mg/kg, dissolved in 10% methanol and olive oil. FK506 was delivered once daily via subcutaneous injection at a dose of 3 mg kg?1, dissolved in 10% ethanol, 10% cremophor and saline [4].
別名 Sirolimus, AY 22989, NSC-2260804
分子量 914.17
分子式 C51H79NO13
CAS No. 53123-88-9

保存条件

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

Ethanol: 100mg/mL (109 mM), Sonication is recommended.

H2O: Insoluble

DMSO: 100 mg/mL (109 mM), Sonication is recommended.

参考文献

1. Pallet N, et al. Rapamycin inhibits human renal epithelial cell proliferation: effect on cyclin D3 mRNA expression and stability. Kidney Int. 2005 Jun;67(6):2422-33. 2. Sarbassov DD, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006 Apr 21;22(2):159-68. 3. Si Y, et al. Concentration-dependent effects of rapamycin on proliferation, migration and apoptosis of endothelial cells in human venous malformation. Exp Ther Med. 2018 Dec;16(6):4595-4601. 4. Bitto A, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016 Aug 23;5:e16351. 5. Bishu K, et al. Anti-remodeling effects of rapamycin in experimental heart failure: dose response and interaction with angiotensin receptor blockade. PLoS One. 2013 Dec 3;8(12):e81325. 6. Zhang JW, et al. Metformin synergizes with rapamycin to inhibit the growth of pancreatic cancer in vitro and in vivo. Oncol Lett. 2018 Feb;15(2):1811-1816. 7. Gao C, Wang H, Wang T, et al. Platelet CLEC‐2 regulates neuroinflammation and restores blood brain barrier integrity in a mouse model of traumatic brain injury[J]. Journal of Neurochemistry. 2020: e14983. 8. Zhang T, Tian C, Wu J, et al. . MicroRNA‐182 exacerbates blood‐brain barrier (BBB) disruption by downregulating the mTOR/FOXO1 pathway in cerebral ischemia[J].  The FASEB Journal. 2020, 34(10): 13762-13775. 9. Shang Z, Zhang T, Jiang M, et al. High-carbohydrate, High-fat Diet-induced Hyperlipidemia Hampers the Differentiation Balance of Bone Marrow Mesenchymal Stem Cells by Suppressing Autophagy via the AMPK/mTOR Pathway in Rat Models[J]. 2020. 10. Zhao, Ming, et al. GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nature Communications . 12.1 (2021): 1-14.

引用文献

1. Yan C, Zheng L, Jiang S, et al.Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity.Cancer Cell.2023 2. Cai Z, Wu X, Song Z, et al.Metformin potentiates nephrotoxicity by promoting NETosis in response to renal ferroptosis.Cell Discovery.2023, 9(1): 104. 3. Yu Q, Li C, Niu Q, et al.Hepatic COX1 loss leads to impaired autophagic flux and exacerbates nonalcoholic steatohepatitis.Acta Pharmaceutica Sinica B.2023 4. Zhuang J, Shen L, Li M, et al.Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance.Cancer Research.2023: CAN-22-2213. 5. Ma W, Wu Q, Wang S, et al.A breakdown of metabolic reprogramming in microglia induced by CKLF1 exacerbates immune tolerance in ischemic stroke.Journal of Neuroinflammation.2023, 20(1): 1-23. 6. Cao Y, Chen X, Pan F, et al.Xinmaikang-mediated Mitophagy Attenuates Atherosclerosis via the PINK1/Parkin Signaling Pathway.Phytomedicine.2023: 154955. 7. Long T, Chen X, Zhang Y, et al.Protective effects of Radix Stellariae extract against Alzheimer's disease via autophagy activation in Caenorhabditis elegans and cellular models.Biomedicine & Pharmacotherapy.2023, 165: 115261. 8. Liu X, Xi H, Han S, et al.Zearalenone induces oxidative stress and autophagy in goat Sertoli cells.Ecotoxicology and Environmental Safety.2023, 252: 114571. 9. Han S, Zhang H, Liu X, et al.Enhanced autophagy reversed aflatoxin B1-induced decrease in lactate secretion of dairy goat Sertoli cells.Ecotoxicology and Environmental Safety.2023, 259: 115063. 10. Li W Y, Shi T S, Huang J, et al.Activation of the mTORC1 signaling cascade in the hippocampus and medial prefrontal cortex is required for the antidepressant actions of vortioxetine in mice.International Journal of Neuropsychopharmacology.2023: pyad017.
11. Zhang Z, Lu Y, Zhang H, et al.Enriched environment ameliorates fear memory impairments induced by sleep deprivation via inhibiting PIEZO1/calpain/autophagy signaling pathway in the basal forebrain.CNS Neuroscience & Therapeutics.2023 12. Tu W, Qin M, Li Y, et al.Metformin regulates autophagy via LGMN to inhibit choriocarcinoma.Gene.2022: 147090. 13. Hu J, Ling Z, Li W, et al.Glutamine promotes the proliferation of epithelial cells via mTOR/S6 pathway in oral lichen planus.Journal of Oral Pathology & Medicine.2022 14. Wu D, Sun X, Zhao Y, et al.Strontium Ranelate Inhibits Osteoclastogenesis through NF-κB-Pathway-Dependent Autophagy.Bioengineering.2023, 10(3): 365. 15. Qi Xiang,Pin Wan,Ge Yang,Siyu Huang,Mengying Qin. Beclin1 Binds to Enterovirus 71 3D Protein to Promote the Virus Replication. Viruses-Basel. 2020, 12(7): 756 16. Lu J, Wang C, Cheng X, et al. A breakdown in microglial metabolic reprogramming causes internalization dysfunction of α-synuclein in a mouse model of Parkinson’s disease. Journal of Neuroinflammation. 2022, 19(1): 1-21 17. Gao C, Yan Y, Chen G, et al. Autophagy Activation Represses Pyroptosis through the IL-13 and JAK1/STAT1 Pathways in a Mouse Model of Moderate Traumatic Brain Injury. ACS Chemical Neuroscience. 2020 18. Cao L, Zhao J, Ma L, et al. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor signaling pathway. Ecotoxicology and Environmental Safety. 2021, 225: 112737. 19. Wang J L, Wang Y, Gao T T, et al. Venlafaxine protects against chronic stress-related behaviors in mice by activating the mTORC1 signaling cascade. Journal of Affective Disorders. 2020, 276: 525-536. 20. Lei Y, Zhang X, Xu Q, et al. Autophagic elimination of ribosomes during spermiogenesis provides energy for flagellar motility. Developmental Cell. 2021, 56(16): 2313-2328. e7 21. Sun S, Hu Y, Zheng Q, et al. Poly(ADP‐ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity. Journal of Cellular Biochemistry. 2019, 120(4): 4813-4826 22. Gao C, Wang H, Wang T, et al. Platelet regulates neuroinflammation and restores blood–brain barrier integrity in a mouse model of traumatic brain injury. Journal of Neurochemistry. 2020 23. Guo X, Wang C, Xu T, et al. SiO 2 prompts host defense against Acinetobacter baumannii infection by mTORC1 activation. Science China Life Sciences. 2020: 1-9. 24. Su Q, Wang J, Liu F, et al. Blocking Parkin/PINK1-mediated mitophagy sensitizes hepatocellular carcinoma cells to sanguinarine-induced mitochondrial apoptosis. Toxicology in Vitro. 2020: 104840 25. Yuan, Shizhu, et al. ATF4-dependent heme-oxygenase-1 attenuates diabetic nephropathy by inducing autophagy and inhibiting apoptosis in podocyte. Renal Failure. 43.1 (2021): 968-979. 26. Su G, Yang W, Wang S, et al. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Β and IL-18. Biochemical and Biophysical Research Communications. 2021, 561: 33-39. 27. Wu Z, You Z, Chen P, et al. Matrine Exerts Antidepressant-Like Effects on Mice: Role of the Hippocampal PI3K/Akt/mTOR Signaling. International Journal of Neuropsychopharmacology. 2018, 21(8): 764-776 28. Xu D, Sun Y, Wang C, et al. Hippocampal mTOR signaling is required for the antidepressant effects of paroxetine. Neuropharmacology. 2018 Jan;128:181-195 29. Ni T, Gao F, Zhang J, et al. Impaired autophagy mediates hyperhomocysteinemia-induced HA-VSMC phenotypic switching. Journal of Molecular Histology. 2019 Apr 26: 1-10 30. Qin Q, Li M, Gu M, et al. Stk24 protects against obesity-associated metabolic disorders by disrupting the NLRP3 inflammasome. Cell Reports. 2021, 35(8): 109161. 31. Yang J, Li J, Guo H, et al. An Experimental Study Reveals the Protective Effect of Autophagy against Realgar-Induced Liver Injury via Suppressing ROS-Mediated NLRP3 Inflammasome Pathway. International Journal of Molecular Sciences. 2022, 23(10): 5697 32. Gao C, Wang H, Wang T, et al. Platelet CLEC‐2 regulates neuroinflammation and restores blood brain barrier integrity in a mouse model of traumatic brain injury. Journal of Neurochemistry. 2020: e14983 33. Sanders D W, Jumper C C, Ackerman P J, et al. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. Elife. 2021, 10: e65962. 34. Xu D, Wang C, Zhu X, et al. The antidepressant-like effects of fluvoxamine in mice involve the mTOR signaling in the hippocampus and prefrontal cortex. Psychiatry research. 2020 Mar;285:112708. doi: 10.1016/j.psychres.2019.112708. Epub 2019 Nov 25. 35. Fu Y H, Tseng C Y, Lu J W, et al. Deciphering the Role of Pyrvinium Pamoate in the Generation of Integrated Stress Response and Modulation of Mitochondrial Function in Myeloid Leukemia Cells through Transcriptome Analysis. Biomedicines. 2021, 9(12): 1869. 36. Zhang T, Tian C, Wu J, et al. MicroRNA-182 exacerbates blood-brain barrier (BBB) disruption by downregulating the mTOR/FOXO1 pathway in cerebral ischemia. The FASEB Journal. 2020, 34(10): 13762-13775 37. Hu A, Zhang J Z, Wang J, et al. Cholesterylation of Smoothened is a calcium-accelerated autoreaction involving an intramolecular ester intermediate. Cell Research. 2022, 32(3): 288-301. 38. Tu W, Qin M, Li Y, et al.Metformin regulates autophagy via LGMN to inhibit choriocarcinoma.Gene.2022: 147090. 39. Yang D L, Zhang Y, He L, et al. Demethylzeylasteral (T-96) Initiates Extrinsic Apoptosis Against Prostate Cancer cells by Inducing ROS-Mediated ER Stress and Suppressing Autophagic Flux. Biological Research. 2021, 54(1): 1-14. 40. Han S, Zhu T, Ding S, et al. Early growth response genes 2 and 3 induced by AP-1 and NF-κB modulate TGF-β1 transcription in NK1. 1− CD4+ NKG2D+ T cells. Cellular Signalling. 2020, 76: 109800. 41. Qiu W Q, Ai W, Zhu F D, et al. Polygala saponins inhibit NLRP3 inflammasome-mediated neuroinflammation via SHP-2-Mediated mitophagy. Free Radical Biology and Medicine. 2022, 179: 76-94. 42. Li W, Luo L X, Zhou Q Q, et al. Phospholipid peroxidation inhibits autophagy via stimulating the delipidation of oxidized LC3-PE. Redox Biology. 2022: 102421. 43. Liu Y, Zhang Y, Zhang M, et al. Activated autophagy restored the impaired frequency and function of regulatory T cells in chronic prostatitis. The Prostate. 2021, 81(1): 29-40 44. Yang D, Liu H, Cai Y, et al. Branched-chain amino acid catabolism breaks glutamine addiction to sustain hepatocellular carcinoma progression. Cell Reports. 2022, 41(8): 111691. 45. Zhang Y, Ding Y, Li M, et al. MicroRNA-34c-5p provokes isoprenaline-induced cardiac hypertrophy by modulating autophagy via targeting ATG4B. Acta Pharmaceutica Sinica B. 2021 46. Wang Y, Ji L, Peng Z, et al. Silencing DAPK3 blocks the autophagosome-lysosome fusion by mediating SNAP29 in trophoblast cells under high glucose treatment. Molecular and Cellular Endocrinology. 2020, 502: 110674 47. Yang Z, Guo D, Zhao J, et al.Aggf1 Specifies Hemangioblasts at the Top of Regulatory Hierarchy via Npas4l and mTOR-S6K-Emp2-ERK Signaling.Arteriosclerosis, Thrombosis, and Vascular Biology.2023 48. Hong J H, Yong C H, Heng H L, et al.Integrative multiomics enhancer activity profiling identifies therapeutic vulnerabilities in cholangiocarcinoma of different etiologies.Gut.2023 49. Zhang X, Wang J, Wang M, et al.IFN-β Pretreatment Alleviates Allogeneic Renal Tubular Epithelial Cell–Induced NK Cell Responses via the IRF7/HLA-E/NKG2A Axis.The Journal of Immunology.2023 50. Han Y, Wang C, Lu K, et al.Bovine parainfluenza type 3 virus induces incomplete autophagy to promote viral replication by activated beclin1 in vitro.Veterinary Microbiology.2024: 109972. 51. Wu A G, Yong Y Y, He C L, et al.Novel 18-Norspirostane Steroidal Saponins: Extending Lifespan and Mitigating Neurodegeneration through Promotion of Mitophagy and Mitochondrial Biogenesis in Caenorhabditis elegans.Mechanisms of Ageing and Development.2024: 111901. 52. Liu Y J, Wang J Y, Zhang X L, et al.Ataxin‐2 sequesters Raptor into aggregates and impairs cellular mTORC1 signaling.The FEBS Journal.2024 53. Chen X, Cao Y, Guo Y, et al.microRNA-125b-1-3p mediates autophagy via the RRAGD/mTOR/ULK1 signaling pathway and mitigates atherosclerosis progression.Cellular Signalling.2024: 111136. 54. Liu S, Su L, Li J, et al.Inhibition of miR-146b-5p alleviates isoprenaline-induced cardiac hypertrophy via regulating DFCP1.Molecular and Cellular Endocrinology.2024: 112252. 55. Tai G J, Ma Y J, Feng J L, et al.NLRP3 inflammasome-mediated premature immunosenescence drives diabetic vascular aging dependent on the induction of perivascular adipose tissue dysfunction.Cardiovascular Research.2024: cvae079.
隠し

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Inhibitor Library Anti-Cancer Clinical Compound Library FDA-Approved Kinase Inhibitor Library Kinase Inhibitor Library Drug Repurposing Compound Library Microbial Natural Product Library Anti-Cancer Drug Library Anti-Cancer Approved Drug Library Anti-Cancer Active Compound Library Natural Product Library for HTS

関連製品

同一標的の関連化合物
Pyrocatechuic acid Arabinose Petroselinic acid N2-methylguanine L-DOPA Potassium gluconate (E)-Oct-2-enoic acid FA-Ala-Arg

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Rapamycin 53123-88-9 Autophagy Metabolism Microbiology/Virology Others PI3K/Akt/mTOR signaling Endogenous Metabolite Antibiotic mTOR Antifungal Sirolimus AY22989 Bacterial FK506-binding protein immunosuppressant mTORC1 AY 22989 Fungal Mammalian target of Rapamycin inhibit AY-22989 Inhibitor NSC-2260804 NSC2260804 HEK293 FKBP12 FKBP NSC 2260804 inhibitor