ホーム 計算ツール
代理店ログイン

Metformin hydrochloride

カタログ番号 T0740   CAS 1115-70-4
別名: Metformin HCl, 1, 1-Dimethylbiguanide hydrochloride, 1,1-Dimethylbiguanide hydrochloride

Metformin hydrochloride (1,1-Dimethylbiguanide hydrochloride) , a widely used anti-diabetic drug, has a potential function as an anti-Y medicine. It inhibits the proliferation of a variety of Y cells including colon, prostate, and etc.

TargetMolの製品は全て研究用試薬です。人体にはご使用できません。 また、個人の方への販売は行っておりません。
Metformin hydrochloride, CAS 1115-70-4
パッケージサイズ 在庫状況 単価(税別)
サンプルについてお問い合わせ
100 mg 在庫あり ¥ 7,500
500 mg 在庫あり ¥ 18,000
1 g 在庫あり ¥ 22,500
5 g 在庫あり ¥ 68,500
ご確認事項

1. 1研究室・グループあたり最大5製品までお申し込みいただけます。 同一製品は1回のみとなります。

2. 1回につき最大2製品までのお申し込みが可能です。

3. 2回目以降をご希望の際は、前回ご提供のサンプルの実験結果をオンラインでご提供いただく必要がございます。

4. 2023 年 1 月 20 日より前にサンプルをお申し込みいただいたお客様は、2023 年の無料申請枠にはカウントされませんが、以前の実験結果をご提供いただく必要があります。

Get quote
バッチを選択  
バッチの詳細情報はお問い合わせください
生物学的特性に関する説明
化学的特性
保存条件 & 溶解度情報
説明 Metformin hydrochloride (1,1-Dimethylbiguanide hydrochloride) , a widely used anti-diabetic drug, has a potential function as an anti-Y medicine. It inhibits the proliferation of a variety of Y cells including colon, prostate, and etc.
In vitro In primary cultured hepatocytes from both rats and humans, metformin activated AMPK in a concentration- and time-dependent manner. rat hepatocytes were incubated with 10 μM or 20 μM metformin for 39 hours. Both 10 μM and 20 μM metformin produced significant AMPK activation [1]. Metformin inhibited proliferation of ESCs in a concentration-dependent manner. The IC50 was 2.45?mmol/l for adenomyotic endometrial stroma cells (A-ESCs) and 7.87?mmol/l for normal endometrial stromal cells (N-ESCs) [2]. Metformin selectively kills cancer stem cells (CSCs) and, as such, acts together with chemotherapy to inhibit tumor growth and prolong remission in mouse xenografts. In CSCs, metformin significantly inhibits expression of a variety of inflammatory genes, Lin28B gene expression, and VEGF protein expression [3].
In vivo Hepatic fatty acid oxidation was induced in metformin-treated rats. Furthermore, metformin treatment produced significant decreases in hepatic expression of mRNAs for SREBP-1, FAS, and S14 [1]. Crl:CD(SD) rats were administered metformin at 0, 200, 600, 900 or 1200 mg/kg/day by oral gavage for 13 weeks. Administration of > or =900 mg/kg/day resulted in moribundity/mortality and clinical signs of toxicity. Other adverse findings included increased incidence of minimal necrosis with minimal to slight inflammation of the parotid salivary gland for males given 1200 mg/kg/day, body weight loss and clinical signs in rats given > or =600 mg/kg/day [4].
細胞研究 Hepatocytes were isolated from male Sprague Dawley (SD) rats by collagenase digestion. For the AMPK assay, cells were seeded in six-well plates at 1.5 × 10^6 cells/well in DMEM containing 100 U/ml penicillin, 100 μg/ml streptomycin, 10% FBS, 100 nM insulin, 100 nM dexamethasone, and 5 μg/ml transferrin for 4 hours. Cells were then cultured in serum-free DMEM for 16 hours followed by treatment for 1 hour or 7 hours with control medium, 5-aminoimidazole carboxamide riboside (AICAR), or metformin at concentrations indicated. For a 39-hour treatment, cells for both control and metformin (10 or 20 μM) groups were cultured in DMEM plus 5% FBS and 100 nM insulin, and the fresh control and metformin-containing medium were replaced every 12 hours (last medium change was 3 hours before harvest). After treatment, the cells were directly lysed in digitonin-containing and phosphatase inhibitor–containing buffer A, followed by precipitation with ammonium sulfate at 35% saturation. AMPK activity was determined by measurement of phosphorylation of a synthetic peptide substrate, SAMS (HMRSAMSGLHLVKRR). For ACC assay, the 35% ammonium sulfate precipitate from digitonin-lysed hepatocytes (4 μg each) was used for determination of ACC activity via 14CO2 fixation in the presence of 20 mM citrate as done previously. For fatty acid oxidation, the oxidation of 14C-oleate to acid-soluble products was performed as done previously, but in medium M199 in the absence of albumin [1].
動物実験 Oral gavage was used to administer 1 ml of metformin (100 mg/ml) or water alone to male SD rats (300–350 g, n = 7–8). Rats were treated once or twice a day for 5 days. Rats were starved for 20 hours and then re-fed for 2 hours before the final dose; 4 hours after the final dose, the animals were anesthetized and livers rapidly removed by freeze clamping followed by blood withdrawal. RNA was prepared from the freeze-clamped liver by RNA isolation reagent. Nuclear extracts were prepared from a pool of seven rat livers. Glucose levels were determined using the standard glucose oxidase assay kit; β-hydroxybutyrate concentrations were assayed by measuring the reduction of NAD to NADH with a standard assay kit. FFA levels were measured with the assay kit [1]. MCF10A-ER-Src cells (5 × 10^6) were injected into the right flank of 18 female nu/nu mice, all of which developed tumors in 10 d with a size of ~100 mm^3. The mice were randomly distributed into six groups (three mice/group) that were untreated or treated by intratumoral injections every 5 d (four cycles) with 1 mg/kg or 4 mg/kg doxorubicin, 200 μg/mL metformin (diluted in the drinking water), or the combination. In another experiment, LNCaP and DU145 prostate cancer cells (5 × 10^6) were injected into the right flank of 12 female nu/nu mice, all of which developed tumors in 10 d with a size of ~75 mm^3. The mice were randomly distributed into four groups that were untreated or treated by intratumoral injections every 5 d (four cycles) with 4 mg/kg doxorubicin and/or 200 μg/mL metformin. In another experiment, A375 and MDA-MB-435 melanoma cells (7 × 10^6) were injected into the right flank of 12 female nu/nu mice, all of which developed tumors in 10 d with a size of ~50 mm3. The mice were randomly distributed into four groups that were untreated or treated by intratumoral injections every 5 d (four cycles) with 10 mg/kg cisplatin and/or 200 μg/mL metformin.Finally, SNU-449 liver cancer cells (10^7) were injected into the right flank of 12 female nu/nu mice, all of which developed tumors in 10 d with a size of ~50 mm^3. The mice were randomly distributed into four groups that were untreated or treated by intratumoral injections every 5 d (four cycles) with 10 mg/kg cisplatin and/or 200 μg/mL metformin. Tumor volume (mean ± SD) was measured at various times after the initial injection [3].
別名 Metformin HCl, 1, 1-Dimethylbiguanide hydrochloride, 1,1-Dimethylbiguanide hydrochloride
分子量 165.63
分子式 C4H12ClN5
CAS No. 1115-70-4

保存条件

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度情報

H2O: 193.21mM

DMSO: 15 mg/mL (90.56 mM), Sonication is recommended.

参考文献

1. Zhou G, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001 Oct;108(8):1167-74. 2. Xue J, et al. Metformin inhibits growth of eutopic stromal cells from adenomyotic endometrium via AMPK activation and subsequent inhibition of AKT phosphorylation: a possible role in the treatment of adenomyosis. Reproduction. 2013 Aug 21;146(4):397-406. 3. Hirsch HA, et al. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):972-7. 4. Quaile MP, et al. Toxicity and toxicokinetics of metformin in rats. Toxicol Appl Pharmacol. 2010 Mar 15;243(3):340-7. 5. Liang C, Sun R, Xu Y, et al. Effect of the Abnormal Expression of BMP-4 in the Blood of Diabetic Patients on the Osteogenic Differentiation Potential of Alveolar BMSCs and the Rescue Effect of Metformin: A Bioinformatics-Based Study[J]. BioMed Research International. 2020, 2020. 6. He Y, Xu K, Wang Y, et al. AMPK as a potential pharmacological target for alleviating LPS-induced acute lung injury partly via NLRC4 inflammasome pathway inhibition[J]. Experimental Gerontology. 2019: 110661. 7. Zhu X, Shen W, Liu Z, et al. Effect of metformin on cardiac metabolism and longevity in aged female mice[J]. Frontiers in Cell and Developmental Biology. 2020, 8. 8. Jia Y, Cui R, Wang C, et al. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway[J]. Redox Biology. 2020: 101534. 9. Zhao H, Li T, Wang K, et al. AMPK-mediated activation of MCU stimulates mitochondrial Ca 2+ entry to promote mitotic progression[J]. Nature cell biology. 2019, 21(4): 476-486. 10. Tang Y, Fang G, Guo F, et al. Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer[J]. Cancer Cell. 2020, 38(1): 115-128. e9.

引用文献

1. Tang Y, Fang G, Guo F, et al. Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell. 2020, 38(1): 115-128. e9. 2. Zhao H, Li T, Wang K, et al. AMPK-mediated activation of MCU stimulates mitochondrial Ca 2+ entry to promote mitotic progression. Nature cell biology. 2019, 21(4): 476-486. 3. Jia Y, Cui R, Wang C, et al. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biology. 2020: 101534. 4. Zhu X, Shen W, Liu Z, et al. Effect of metformin on cardiac metabolism and longevity in aged female mice. Frontiers in Cell and Developmental Biology. 2021 Jan 26;8:626011. doi: 10.3389/fcell.2020.626011. eCollection 2020. 5. He Y, Xu K, Wang Y, et al. AMPK as a potential pharmacological target for alleviating LPS-induced acute lung injury partly via NLRC4 inflammasome pathway inhibition. Experimental Gerontology. 2019: 110661. 6. Liang C, Sun R, Xu Y, et al. Effect of the Abnormal Expression of BMP-4 in the Blood of Diabetic Patients on the Osteogenic Differentiation Potential of Alveolar BMSCs and the Rescue Effect of Metformin: A Bioinformatics-Based Study. BioMed Research International. 2020, 2020 7. Cai Z, Wu X, Song Z, et al.Metformin potentiates nephrotoxicity by promoting NETosis in response to renal ferroptosis.Cell Discovery.2023, 9(1): 104.

関連化合物ライブラリー

この製品は下記化合物ライブラリに含まれています:
Anti-Cancer Clinical Compound Library Kinase Inhibitor Library FDA-Approved Kinase Inhibitor Library Anti-Cancer Approved Drug Library Anti-Cancer Drug Library Drug Repurposing Compound Library EMA Approved Drug Library Inhibitor Library Human Metabolite Library Endoplasmic Reticulum Stress Compound Library

関連製品

同一標的の関連化合物
Ruxolitinib U0126-EtOH Aspirin Simvastatin Oxidopamine hydrochloride Sunitinib Malate AICAR phosphate Isoniazid

投与量変換

You can also refer to dose conversion for different animals. 詳細

In vivo投与量計算 (透明溶液)

ステップ1: 以下の情報を入力してください
投与量
mg/kg
動物の平均体重
g
動物あたりの投与量
ul
動物数
溶媒の組成を入力してください
% DMSO
%
% Tween 80
% ddH2O
計算する リセット

計算器

モル濃度計算機
希釈計算機
再構成計算
分子量計算機
=
X
X

モル度計算機では以下の計算が可能です

  • 既知の体積と濃度の溶液を調製するために必要な化合物の質量
  • 質量が既知の化合物を目的の濃度まで溶解させるのに必要な溶液の量
  • 特定の体積の中に既知の質量の化合物を入れて得られる溶液の濃度
参考例

モル濃度計算機を使用したモル濃度計算の例
化合物の分子量が197.13g/molである場合、10mlの水に10mMのストック溶液を作るのに必要な化合物の質量はどれくらいですか?
[分子量(MW)]の欄に[197.13]と入力してください
[濃度]ボックスに10と入力し、正しい単位(millimolar)を選択します
[容量]ボックスに10と入力し、正しい単位(milliliter)を選択します
計算を押します
答えの19.713mgが質量欄に表示されます

X
=
X

溶液を作るのに必要な希釈率の計算

溶液の調製に必要な希釈率の算出
希釈計算機は、既知の濃度の原液をどのように希釈するかを計算することができる便利なツールです。V1を計算するためにC1、C2&V2を入力します。

参考例

Tocrisの希釈計算器を用いた希釈計算の一例
50μMの溶液を20ml作るためには、10mMの原液を何ml必要ですか?
C1V1=C2V2という式を用いて、C1=10mM、C2=50μM、V2=20ml、V1を未知数とします。
濃度(開始)ボックスに10を入力し正しい単位(millimolar)を選択してください
濃度(終了)ボックスに50を入力し正しい単位(millimolar)を選択してください
体積(終了)ボックスに20を入力し正しい単位(millimolar)を選択してください
計算を押します
100 microliter (0.1 ml) という答えが体積(開始)ボックスに表示されます。

=
/

バイアルを再構成するのに必要な溶媒の量を計算する.

再構成計算機を使えば、バイアルを再構成するための試薬の量をすぐに計算することができます.
試薬の質量と目標濃度を入力するだけで計算します。

g/mol

化合物の化学式を入力して、そのモル質量や元素組成を計算します

Tヒント:化学式は大文字と小文字を区別します。: C10H16N2O2 c10h16n2o2

化合物のモル質量(分子量)を計算する手順:
化学物質のモル質量を計算するには、その化学式を入力し、「計算」をクリックしてください。.
分子質量、分子量、モル質量、モル重量の定義:
分子質量(分子量)とは、物質の1分子の質量であり、統一された原子質量単位(u)で表されます。(1uは炭素12の1原子の質量の1/12に等しい)
モル質量(molar weight)とは、ある物質の1モルの質量のことで、単位はg/molです。

bottom

技術サポート

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Metformin hydrochloride 1115-70-4 Autophagy Chromatin/Epigenetic PI3K/Akt/mTOR signaling Mitophagy AMPK insulin 1,1-Dimethylbiguanide Metformin HCl Inhibitor 1, 1-Dimethylbiguanide Hydrochloride respiratory AMP-activated protein kinase blood-brain inhibit chain Mitochondrial Autophagy sensitivity liver Metformin Metformin Hydrochloride barrier 1, 1-Dimethylbiguanide hydrochloride type 1,1-Dimethylbiguanide Hydrochloride diabetes mitochondrial 1,1-Dimethylbiguanide hydrochloride inhibitor